【题目】已知平面直角坐标系xOy(如图),直线 y=x+b经过第一、二、三象限,与y轴交于点B,点A(2,t)在直线y=x+b上,连结AO,△AOB的面积等于1.
(1)求b的值;
(2)如果反比例函数y= (k是常量,k≠0)的图象经过点A,求这个反比例函数的表达式.
【答案】(1)1(2)y=
【解析】试题分析:(1)连接OA,过A作AC垂直于y轴,由A的横坐标为2得到AC=2,对于直线解析式,令y=0求出x的值,表示出OB的长,三角形AOB面积以OB为底,AC为高表示出来,根据已知三角形的面积求出OB的长,确定出B坐标,代入一次函数解析式中即可求出b的值;
(2)将A坐标代入一次函数求出t的值,确定出A坐标,将A坐标代入反比例解析式中求出k的值,即可确定出反比例解析式.
试题解析:解:(1)过A作AC⊥y轴,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB=OBAC=OB=1,∴b=1;
(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,则反比例解析式为y=.
科目:初中数学 来源: 题型:
【题目】如图所示,在ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是( )
A. △CDF≌△EBC
B. ∠CDF=∠EAF
C. CG⊥AE
D. △ECF是等边三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为原点,一次函数y1=x+m与反比例函数y2=的图象相交于A(2,1),B(n,﹣2)两点,与x轴交于点C.
(1)求反比例函数解析式和点B坐标;
(2)当x的取值范围是 时,有y1>y2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)(2017·黄冈)已知:如图,一次函数y=-2x+1与反比例函数y=的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连结DE.
(1)求k的值;
(2)求四边形AEDB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】镇江某特产专卖店销售某种特产,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克,经过市场调查发现,单价每降低3元,平均每天的销售量可增加30千克,专卖店销售这种特产若想要平均每天获利2240元,且销售尽可能大,则每千克特产应定价为多少元?
(1)解:方法1:设每千克特产应降价x元,由题意,得方程为:_____;
方法2:设每千克特产降低后定价为x元,由题意,得方程为:_____.
(2)请你选择一种方法,写出完整的解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.
(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;
(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求证:BE=AD;
(2)求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com