精英家教网 > 初中数学 > 题目详情
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)判断OE与OF的大小关系?并说明理由;
(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF会是正方形.
分析:(1)利用角平分线的性质的得出,∠1=∠2,进而得出,∠3=∠2,即可得出OE与OF的大小关系;
(2)首先的很粗四边形AECF是平行四边形,进而得出∠ECF=90度,再利用矩形的判定得出即可;
(3)由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,进而得出AC⊥MN,即可得出答案.
解答:(1)证明:∵CE平分∠ACB,∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,∴∠3=∠2,
∴EO=CO,同理,FO=CO,
∴EO=FO.

(2)解:当点O运动到AC的中点时,四边形AECF是矩形.
理由:∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,
∵CF平分∠BCA的外角,∴∠4=∠5,
又∵∠1=∠2,∴∠2+∠4=
1
2
×180°=90°.
即∠ECF=90度,∴平行四边形AECF是矩形.

(3)解:当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF会是正方形,
理由:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,
∵∠ACB=90°,CE、CN分别是∠ACB与∠ACB的外角平分线,
∴∠1=∠2=∠3=∠4=∠5=45°,
∴AC⊥MN,
∴四边形AECF是正方形.
点评:此题主要考查了矩形的判定、平行四边形的判定以及正方形的判定等知识,正确区分它们的定义是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,△ABC中,点D在AC上,CD=2AD,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.已给的图形中存在哪几对相似三角形?请选择一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D为AB边上的一点,点F为BC延长线上一点,DF交AC于点E.下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D在BC上,点E在AB上,BD=BE,下列四个条件中,不能使△ADB≌△CEB的条件是(  )

查看答案和解析>>

同步练习册答案