精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为;抛物线的解析式为
(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

【答案】
(1)解:(1,4);y=﹣x2+2x+3
(2)解:依题意有:OC=3,OE=4,

∴CE= = =5,

当∠QPC=90°时,

∵cos∠QCP= =

=

解得t=

当∠PQC=90°时,

∵cos∠QCP= =

=

解得t=

∴当t= 或t= 时,△PCQ为直角三角形


(3)解:∵A(1,4),C(3,0),

设直线AC的解析式为y=kx+b,则

解得

故直线AC的解析式为y=﹣2x+6.

∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+

∴Q点的横坐标为1+

将x=1+ 代入y=﹣(x﹣1)2+4中,得y=4﹣

∴Q点的纵坐标为4﹣

∴QF=(4﹣ )﹣(4﹣t)=t﹣

∴SACQ=SAFQ+SCFQ

= FQAG+ FQDG

= FQ(AG+DG)

= FQAD

= ×2(t﹣

=﹣ +t

=﹣ (t2+4﹣4t﹣4)

=﹣ (t﹣2)2+1,

∴当t=2时,△ACQ的面积最大,最大值是1


【解析】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上, ∴点A坐标为(1,4),
设抛物线的解析式为y=a(x﹣1)2+4,
把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,
解得a=﹣1.
故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
(1)根据抛物线的对称轴与矩形的性质可得点A坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;(3)根据待定系数法可得直线AC的解析式,根据SACQ=SAFQ+SCPQ可得SACQ=﹣ (t﹣2)2+1,依此即可求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解中学生的体能情况,某校抽取了50名八年级学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频数分布直方图如下图所示已知图中从左到右前第一、第二、第三、第五小组的频率分别为0.04 , 0.12 0.4 O.28 ,根据已知条件解答下列问题:

(1)第四个小组的频率是多少? 你是怎样得到的?

(2)这五小组的频数各是多少?

(3)在这次跳绳中,跳绳次数的中位数落在第几小组内?

(4)将频数分布直方图补全,并分别写出各个小组的频数,并画出频数分布折线图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入表是某周的生产情况超产为正、减产为负

星期

增减

根据记录可知前三天共生产多少辆;

产量最多的一天比产量最少的一天多生产多少辆;

该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:
①该抛物线的对称轴在y轴左侧;
②关于x的方程ax2+bx+c+2=0无实数根;
③a﹣b+c≥0;
的最小值为3.
其中,正确结论的个数为( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=

(1)求反比例函数y= 和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两站相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.

(1)若两车同时开出,背向而行,则经过多长时间两车相距540千米?

(2)若两车同时开出,同向而行(快车在后),则经过多长时间快车可追上慢车?

(3)若两车同时开出,同向而行(慢车在后),则经过多长时间两车相距300千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个正整数能表示为两个正整数的平方差,则称这个正整数为智慧数(如3=22-1216=52-32,则316是智慧数).已知按从小到大的顺序构成如下数列:35789111213151617192021232425则第2 013智慧数______.

【答案】2 687

【解析】解析:观察数的变化规律,可知全部智慧数从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n组的第一个数为4nn≥2.因为2 013÷3=671,所以第2 013智慧数是第671组中的第3个数,即为4×671+3=2 687.

点睛:找规律题需要记忆常见数列

1,2,3,4……n

1,3,5,7……2n-1

2,4,6,8……2n

2,4,8,16,32……

1,4,9,16,25……

2,6,12,20……n(n+1)

一般题目中的数列是利用常见数列变形而来,其中后一项比前一项多一个常数,是等差数列,列举找规律.后一项是前一项的固定倍数,则是等比数列,列举找规律.

型】填空
束】
19

【题目】如图,郑某把一块边长为a m的正方形的土地租给李某种植,他对李某说:我把你这块地的一边减少5 m,另一边增加5 m,继续租给你,你也没有吃亏,你看如何”.李某一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李某有没有吃亏?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(1)992-102×98;

(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.

【答案】(1)-195(2)2xy-2

【解析】试题分析:(1)利用平方差公式,完全平方公式简便计算.

(2)提取公因式,化简.

试题解析:

(1)原式=(100-1)2-(100+2)×(100-2)

=(1002-200+1)-(1002-4)=-200+5=-195.

(2)原式=[x2yxy-1)-x2y(1-xy)]÷x2y

=2x2yxy-1)÷x2y=2(xy-1)=2xy-2.

型】解答
束】
21

【题目】1先化简,再求值:aa-2b+a+b2,其中a=-1b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,E 是直线 CD 上的一点,且 BAE=30°, 是直线 CD 上的一动点,M AP 的中点,直线 MNAP 且与 CD 交于点 N,设 BAP=X°,MNE=Y°.

(1)在图2 中,当 x=12 时,∠MNE= ;在图 3 中,当 x=50 时,∠MNE=

(2)研究表明:yx之间关系的图象如图4所示( 不存在时,用空心点表示),请你根据图象直接估计当 y=100 时,x=

(3)探究:当 x= 时,点 N 与点 E 重合;

(4)探究:当 x>105 时,求yx之间的关系式.

查看答案和解析>>

同步练习册答案