【题目】已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.
(1)求证:AF=DC;
(2)请问:AD与CF满足什么条件时,四边形AFDC是矩形,并说明理由.
【答案】(1)见解析;(2)见解析.
【解析】
(1)因为AF∥DC,E为AD的中点,即可根据AAS证明△AEF≌△DEC,得出AF=DC即可;
(2)由(1)知,AF=DC且AF∥DC,可得四边形AFDC是平行四边形,又由AD=CF,故可根据对角线相等的平行四边形是矩形进行判定.
(1)∵AF∥DC,
∴∠AFE=∠DCE,
又∵E为AD的中点,
∴AE=DE,
在△AEF和△DEC中,,
∴△AEF≌△DEC(AAS),
∴AF=DC;
(2)当AD=CF时,四边形AFDC是矩形;理由如下:
由(1)得:AF=DC且AF∥DC,
∴四边形AFDC是平行四边形,
又∵AD=CF,
∴四边形AFDC是矩形(对角线相等的平行四边形是矩形).
科目:初中数学 来源: 题型:
【题目】如图,两个完全相同的三角尺ABC和DEF在直线l上滑动,可以添加一个条件,使四边形CBFE为菱形,下列选项中错误的是( )
A. BD=AE
B. CB=BF
C. BE⊥CF
D. BA平分∠CBF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D是边BC上一动点(不与B,C重合),DE⊥AB于点E,点F是线段AD的中点,连接EF,CF.
(1)试猜想线段EF与CF的大小关系,并加以证明.
(2)若∠BAC=30°,连接CE,在D点运动过程中,探求CE与AD的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.
(1)求证:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一架梯子AB斜靠在墙面上,且AB的长为25米.
(1)若梯子底端离墙角的距离OB为7米,求这个梯子的顶端A距地面有多高?
(2)在(1)的条件下,如果梯子的顶端A下滑4米到点A,,那么梯子的底端B在水平方向滑动的距离BB,为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ABC的两边分别与∠DEF的两边平行,即BA∥ED,BC∥EF.
(1)在图1中,射线BA与ED同向,BC与EF也同向,∠B与∠E的数量关系是: ;
(2)在图2中,射线BA与ED异向,BC与EF也异向,∠B与∠E的数量关系是: ;
(3)在图3中,射线BA与ED同向,BC与EF异向,∠B与∠E有怎样的数量关系,并说明理由;
(4)通过上面(1)、(2)、(3),你可得到的结论是:如果一个角的两边分别平行于另一个角的两边,则这两个角的关系是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com