分析 (1)由A、B、C的坐标,利用待定系数法可求得抛物线的解析式;
(2)由对称性可求得D点坐标,利用待定系数法可求得直线BD的解析式;
(3)用m可表示出M、Q的坐标,则可表示出QM的长,由平行四边形的性质可知QM∥CD且QM=CD,则可得到关于m的方程,可求得m的值.
解答 解:
(1)由题意可得$\left\{\begin{array}{l}{c=2}\\{a-b+c=0}\\{16a+4b+c=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{3}{2}}\\{c=2}\end{array}\right.$,
∴抛物线解析式为y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2;
(2)∵点C与点D关于x轴对称,
∴D(0,-2),
∴可设直线BD解析式为y=kx-2,
把B(4,0)代入可得4k-2=0,解得k=$\frac{1}{2}$,
∴直线BD的解析式为y=$\frac{1}{2}$x-2;
(3)如图所示,
设Q(m,-$\frac{1}{2}$m2+$\frac{3}{2}$m+2),则M(m,$\frac{1}{2}$m-2),
∴QM=-$\frac{1}{2}$m2+$\frac{3}{2}$m+2-($\frac{1}{2}$m-2)=-$\frac{1}{2}$m2+m+4,
∵QM∥CD,
∴当QM=CD时,四边形CQMD是平行四边形,
∴-$\frac{1}{2}$m2+m+4=4,解得m=0(不合题意,舍去)或m=2,
∴当m=2时,四边形CQMD是平行四边形.
点评 本题为二次函数的综合应用,涉及待定系数法、轴对称、平行四边形的性质、方程思想等知识.在(1)(2)中注意利用待定系数法,在(3)中用m表示出QM的长是解题的关键.本题考查知识点较多,综合性较强,但难度不大,较易得分.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 9,9 | B. | 9,10 | C. | 18,9 | D. | 18,18 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (0,0) | B. | (-2,1) | C. | (-2,-1) | D. | (0,-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com