【题目】如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:
①∠APO+∠DCO=30°;②△OPC是等边三角形:③AC=DO+AP;④S△ABC=S四形形AOCP.
其中正确的是_______.(填序号)
【答案】①②④
【解析】
①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;
②证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;
③首先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.
④过点C作CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.
解:如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°-∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;
故①正确;
∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形;
故②正确;
如图2,在AC上截取AE=PA,
∵∠PAE=180°-∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP;
故③错误;
如图3,过点C作CH⊥AB于H,
∵∠PAC=∠DAC=60°,AD⊥BC,
∴CH=CD,
∴S△ABC=ABCH,
S四边形AOCP=S△ACP+S△AOC
=APCH+OACD
=APCH+OACH
=CH(AP+OA)
=CHAC,
∴S△ABC=S四边形AOCP;
故④正确.
故答案为:①②④.
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上由B出发向C点运动,同时点Q在线段CA上由C点出发向A点运动.设运动时间为t秒.
(1)若点P的速度为3cm/s,用含t的式子表示第t秒时,BP= cm,CP= cm.
(2)在(1)的条件下,若点Q运动速度与点P的运动速度相等,经过几秒钟△BPD与△CQP全等,说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,且点P的速度比点Q的速度慢1cm/s时,点Q的运动速度为多少时?能够使△BPD与△CQP全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,直线AB∥CD
(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;
(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;
(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC绕直角顶点A逆时针旋转90°得到△ADE,BC的延长线交DE于F,连接BD,若BC=2EF,试证明△BED是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(知识重现)我们知道,在axN中,已知底数a,指数x,求幂N的运算叫做乘方运算.例如23=8:已知幂N,指数x,求底数a的运算叫做开方运算,例如=2.
(学习新知)
现定义:如果ax=N(a0且a1),即a的x次方等于N(a0且a1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN.其中a叫做对数的底数,N叫做真数,x叫做以a为底N的对数,例如log28=3,零没有对数;在实数范围内,负数没有对数.
(应用新知)
(1)选择题:在式子log5125中,真数是_______.
(2)①计算以下各对数的值:log39=_______;log327=_______.
②根据①中计算结果,请你直接写出logaM,logaN,loga(MN)之间的关系,(其中a0且a1,M0,N0).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D在边AC上,且BD=DA=BC.
(1)如图1,填空:∠A=_______.
(2)如图2,若M为线段AC上的点,过M作直线MH⊥BD于H,分别交直线AB、BC于点N、E.
①求证:△BNE是等腰三角形;
②试写出线段AN、CE、CD之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面推理过程:
如图,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________ _________),
∴∠2 =∠CGD(等量代换).
∴CE∥BF(___________________ ________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代换).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB
(1)若∠DAB=72°,∠2= °,∠3= °;
(2)求证:AE∥CF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com