分析 连结OC,如图,根据圆周角定理得到∠BOC=2∠CAB=72°,再根据等腰三角形的性质和三角形内角和定理可计算出∠OBC=54°,则∠ABC=∠OBA+∠OBC=84°,然后根据圆内接四边形的性质求∠D的度数.
解答 解:连结OC,如图,
∠BOC=2∠CAB=2×36°=72°,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠OBC=$\frac{1}{2}$(180°-∠BOC)=$\frac{1}{2}$(180°-72°)=54°,
∴∠ABC=∠OBA+∠OBC=30°+54°=84°,
∵∠D+∠ABC=180°,
∴∠D=180°-84°=96°.
故答案为96.
点评 本题考查了圆内接四边形的性质:圆内接四边形的对角互补;任意一个外角等于它的内对角.也考查了圆周角定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8 | B. | 9 | C. | 13 | D. | 15 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com