精英家教网 > 初中数学 > 题目详情

【题目】如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm。

(1)(1)若OB=6cm.①求点C的坐标;②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离
(2)点C与点O的距离的最大值= cm.

【答案】
(1)

解:(1)①过点C作y轴的垂线,垂足为D,如图1:

在Rt△AOB中,AB=12,OB=6,则BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3

所以点C的坐标为(﹣3,9);

②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:

AO=12×cos∠BAO=12×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=12在△A'O B'中,由勾股定理得,

(6﹣x)2+(6+x)2=122,解得:x=6(﹣1),∴滑动的距离为6(﹣1)


(2)12
【解析】(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:

则OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,
,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2
∴取AB中点D,连接CD,OD,则CD与OD之和大于或等于CO,当且仅当C,D,O三点共线时取等号,此时CO=CD+OD=6+6=12,故答案为:12.
(1)①过点C作y轴的垂线,垂足为D,利用含30°角的直角三角形的性质解答即可;②设点A向右滑动的距离为x,得点B向上滑动的距离也为x,利用三角函数和勾股定理进行解答;(2)过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证明△ACE与△BCD相似,再利用相似三角形的性质解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.
甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(0,3),且当x=1时,y有最小值2.

(1)求a,b,c的值
(2)设二次函数y=k(2x+2)﹣(ax2+bx+c)(k为实数),它的图象的顶点为D.
①当k=1时,求二次函数y=k(2x+2)﹣(ax2+bx+c)的图象与x轴的交点坐标;
②请在二次函数y=ax2+bx+c与y=k(2x+2)﹣(ax2+bx+c)的图象上各找出一个点M,N,不论k取何值,这两个点始终关于x轴对称,直接写出点M,N的坐标(点M在点N的上方);
③过点M的一次函数y=﹣x+t的图象与二次函数y=ax2+bx+c的图象交于另一点P,当k为何值时,点D在∠NMP的平分线上?
④当k取﹣2,﹣1,0,1,2时,通过计算,得到对应的抛物线y=k(2x+2)﹣(ax2+bx+c)的顶点分别为(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),请问:顶点的横、纵坐标是变量吗?纵坐标是如何随横坐标的变化而变化的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.

(1)求点A的坐标。
(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程:x2﹣2x﹣3=0;
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.

(1)求k的值。
(2)求△BMN面积的最大值。
(3)若MA⊥AB,求t的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:

(1)求图②中“科技类”所在扇形的圆心角α的度数
(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?
(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:
①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正确的是(

A.①②
B.只有①
C.③④
D.①④

查看答案和解析>>

同步练习册答案