分析 (1)由平行四边形的性质得出AB=CD,BC=AD=8cm,BC∥AD,OA=OC=$\frac{1}{2}$AC,OB=OD=$\frac{1}{2}$BD=6cm,由勾股定理求出OC,即可得出AC的长;
(2)由勾股定理求出CD,得出AB,△ABC的周长=AB+BC+AC,即可得出结果.
解答 解:(1)∵四边形ABCD是平行四边形,
∴AB=CD,BC=AD=8cm,BC∥AD,OA=OC=$\frac{1}{2}$AC,OB=OD=$\frac{1}{2}$BD=6cm,
∴∠DBC=∠ADB,
∵DE⊥AD,
∴∠DBC=∠ADB=90°,
∴OC=$\sqrt{O{B}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10(cm),
∴AC=2OC=20cm;
(2)在Rt△DBC中,CD=$\sqrt{B{C}^{2}+B{D}^{2}}$=$\sqrt{{8}^{2}+1{2}^{2}}$=4$\sqrt{13}$,
∴AB=4$\sqrt{13}$,
∴△ABC的周长=AB+BC+AC=4$\sqrt{13}$+8+20=28+4$\sqrt{13}$.
点评 本题考查了平行四边形的性质、勾股定理、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com