精英家教网 > 初中数学 > 题目详情
(2013•江干区一模)如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①△AED≌△AEF;    ②∠FAD=90°;③BE+DC=DE;      ④BE2+DC2=DE2
其中正确的是
①②④
①②④
分析:△ADC绕点A顺时针90°旋转后,得到△AFB,根据旋转的性质得到∠FAD=90°,DC=BF,∠FBE=90°,AD=AF,而∠DAE=45°,得到∠EAF=90°-45°=45°,所以②正确;易得△AED≌△AEF,则EF=ED,所以①正确;在Rt△BEF中,根据勾股定理即可得到BE2+DC2=DE2,所以④正确.根据旋转的定义及性质,结合图形求解.
解答:解:∵△ADC绕点A顺时针90°旋转后,得到△AFB,
∴∠FAD=90°,DC=BF,∠FBE=90°,AD=AF,
∵∠DAE=45°,
∴∠EAF=90°-45°=45°,
∴△AED≌△AEF,
∴EF=ED,
在Rt△BEF中,BE2+BF2=EF2
∴BE2+DC2=DE2
∴①②④正确.
故填:①②④.
点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了三角形全等的判定与性质以及勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•江干区一模)已知x是实数,且(x-2)(x-3)
1-x
=0,则x2+x+1的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江干区一模)已知两直线y1=kx+k-1、y2=(k+1)x+k(k为正整数),设这两条直线与x轴所围成的三角形的面积为Sk,则S1+S2+S3+…+S2013的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江干区一模)如图,点P是反比例函数y=
6
x
的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江干区一模)孙杨正在为备战第15届游泳世锦赛而刻苦训练.为判断他的成绩是否稳定,教练要对他10次训练的成绩进行统计分析,则教练需了解10次成绩的(  )

查看答案和解析>>

同步练习册答案