精英家教网 > 初中数学 > 题目详情
97、如图①,在等腰△ABC中,底边BC上有任意一点,过点P作PE⊥AC,PD⊥AB,垂足为D、E,再过C作CF⊥AB于点F;(1)求证:PD+PE=CF;(2)若点P在BC的延长线上,如图②,则PE、PD、CF之间存在什么样的等量关系,请写出你的猜想,并证明.
分析:要证明两条线段的和等于其中一条线段,需要作辅助线:延长较短线段,把两条加到一起或在较长线段上截取.
(1)可以作PM⊥CF,构造了矩形和一对全等三角形;
(2)类比(1)中的结论,很容易得到猜想,再进一步证明就可.
解答:证明:(1)作PM⊥CF,
∵PD⊥AB,CF⊥AB,
∴∠FAP=∠DFM=∠FMP=90°,
∴四边形PDFM是矩形,
∴PD=FM.
∵PE⊥AC,且PM⊥CF,
∴∠PMC=∠CEP=90°,
∵AB=AC,
∴∠B=∠ACB,
∵AB⊥FC,PM⊥FC,
∴AB∥PM,
∴∠MPC=∠B,
∴∠MPC=∠ECP,
∵PC=CP,
∴△PMC≌△PEC(AAS),
∴CM=PE,
∴PD+PE=FM+MC=CF;

(2)PD-PE=CF;
证明如下:
作CM⊥PD于M,同(1)得四边形CMDF是矩形,则CF=DM,
∴CM∥AB,∴∠MCP=∠B,
又∠ACB=∠ECP(对顶角相等),
且AB=AC得到∠B=∠ACB,
∴∠MCP=∠ECP,
又PE⊥AC,CM⊥PD,∴∠PMC=∠PEC=90°,
再PC=PC,
∴△PCM≌△PCE(AAS),
∴PM=PE,
∴PD-PE=PD-PM=DM=CF.
点评:本题考查了等腰三角形的性质及全等三角形的判定与性质;解答此题的关键是辅助线的作法,把证明两条线段的和或差等于一条线段转化为证明两条线段相等的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图1,在等腰梯形ABCD中,AB∥DC,AD=BC=4cm,AB=12cm,CD=8cm点P从A开始沿AB边向B以3cm/s的速度移动,点Q从C开始沿CD边向D以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停止运动.设运动时间为t(s).
(1)t为何值时,四边形APQD是平形四边形?
(2)如图2,如果⊙P和⊙Q的半径都是2cm,那么,t为何值时,⊙P和⊙Q外切?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宁德)某数学兴趣小组开展了一次活动,过程如下:
如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.
(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2
同组的小颖和小亮随后想出了两种不同的方法进行解决;小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2)
小亮的想法:将△ABD绕点A顺时针旋转90°得到△ACG,连接EG(如图3);
小敏继续旋转三角板,在探究中得出当45°<α<135°且α≠90°时,等量关系BD2+CE2=DE2仍然成立,先请你继续研究:当135°<α<180°时(如图4)等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明;若不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.
(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;
(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将一块三角板中含45°角的顶点放在A上,从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.
(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决;小颖的想法:将△ABD沿AD所在的直线对折得到△ADF(如图2);小亮的想法:将△ABD绕点A顺时针旋转90°得到△ACG(如图3).请你选择其中的一种方法证明小敏的发现的是正确的.

查看答案和解析>>

同步练习册答案