精英家教网 > 初中数学 > 题目详情
10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=10,则线段MN的长为10.

分析 先根据平行线的性质,得出∠MEB=∠CBE,∠NEC=∠BCE,再根据∠ABC和∠ACB的平分线交于点E,得出∠MBE=∠EBC,∠NCE=∠BCE,最后根据ME=MB,NE=NC,求得MN的长即可.

解答 解:∵MN∥BC
∴∠MEB=∠CBE,∠NEC=∠BCE
∵在△ABC中,∠ABC和∠ACB的平分线交于点E,
∴∠MBE=∠EBC,∠NCE=∠BCE
∴∠MEB=∠MBE,∠NEC=∠NCE
∴ME=MB,NE=NC
∴MN=ME+NE=BM+CN=10
故答案为:10

点评 本题主要考查了平行线的性质以及等腰三角形的判定,解题时注意:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如果三角形的三边长分别为3,4,1-2a,那么a的取值范围是-6<a<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在梯形ABCD中,AD∥BC(AD<BC),P为AD上一点,且∠BPC=∠A,求证:BP2=BC•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,直线y=$\frac{1}{2}$x+2与x轴交于点A,与y轴交于点B,点C为y轴上一点,且B是线段OC的中点.
(1)求直线AC的解析式;
(2)动点P从点A出发,沿射线AO方向运动,点P的运动速度为每秒2个单位,运动时间为t,过点P作垂直于x轴的直线L分别交射线AB和射线AC于点E和点F,设线段EF的长d(d≠0),求d与t的函数关系式,并直接写出相应的自变量t的取值范围;
(3)在(2)的条件下,过点B和点C分别作x轴的平等线m和n,连接PB并延长PB交直线n于点Q,点R为直线m上的任意一点,是否存在t值,使△PQR以PR为底边的等腰直角三角形,若存在,请求出t的值,并求出此时点R的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,茬四边形ABCD中,AD∥BC,E是BC的中点,AC平分∠BCD,且AC⊥AB,接DE,交AC于F.
(1)求证:AD=CE;
(2)若∠B=60°,试确定四边形ABED是什么特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:如图,AB=AE,∠1=∠2,∠B=∠E,求证:BC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C,D,E,F,且AC=AD,求证:BE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图所示,AB∥CD且AB=CD,AD,BC交于点O,点E,F分别是OA,OD上的点,且OE=OF,连接CE,BF.
求证:BF=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知$\frac{4x-1}{(x-2)(x-5)}$=$\frac{A}{x-5}$+$\frac{B}{x-2}$,求A,B的值.

查看答案和解析>>

同步练习册答案