分析 (1)证△AGF∽△BCF得$\frac{AG}{BC}$=$\frac{AF}{BF}$=$\frac{2}{3}$,即AG=$\frac{2}{3}$CB,由$\overrightarrow{AG}=\frac{2}{3}$$\overrightarrow{CB}$=$\frac{2}{3}$($\overrightarrow{AB}-\overrightarrow{AC}$)可得答案;
(2)延长CB到E,使BE=AG,连接AE,则$\overrightarrow{AE}$=$\overrightarrow{AG}+\overrightarrow{AB}$.
解答 解:(1)∵AG∥BC,AF=$\frac{2}{5}$AB,
∴△AGF∽△BCF,$\frac{AF}{BF}$=$\frac{2}{3}$,
∴$\frac{AG}{BC}$=$\frac{AF}{BF}$=$\frac{2}{3}$,即AG=$\frac{2}{3}$CB,
∴$\overrightarrow{AG}=\frac{2}{3}$$\overrightarrow{CB}$=$\frac{2}{3}$($\overrightarrow{AB}-\overrightarrow{AC}$)=$\frac{2}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$;
(2)如图所示,
$\overrightarrow{AE}$=$\overrightarrow{BE}+\overrightarrow{AB}$=$\overrightarrow{AG}+\overrightarrow{AB}$.
点评 本题主要考查相似三角形的判定与性质及向量的运算、作图,熟练掌握向量的基本运算法则是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com