精英家教网 > 初中数学 > 题目详情
2.在平面直角坐标系中,对于任意两点A(x1,y1)B (x2,y2),规定运算:
(1)A⊕B=(x1+x2,y1+y2);
(2)A⊙B=x1x2+y1y2
(3)当x1=x2且y1=y2时,A=B.
有下列四个命题:
①若有A(1,2),B(2,-1),则A⊕B=(3,1),A⊙B=0;
②若有A⊕B=B⊕C,则A=C;
③若有A⊙B=B⊙C,则A=C;
④(A⊕B)⊕C=A⊕(B⊕C)对任意点A、B、C均成立.
其中正确的命题为①②④(只填序号)

分析 ①根据新定义的运算法则,可计算出A⊕B=(3,1),A?B=0;
②设C(x3,y3),根据新定义得A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),则x1+x2=x2+x3,y1+y2=y2+y3,于是得到x1=x3,y1=y3,然后根据新定义即可得到A=C;
③由于A⊙B=x1x2+y1y2,B⊙C=x2x3+y2y3,则x1x2+y1y2=x2x3+y2y3,不能得到x1=x3,y1=y3,所以A≠C;
④根据新定义的运算法则,可得(A⊕B)⊕C=A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3).

解答 解:①∵A(1,2),B(2,-1),
∴A⊕B=(1+2,2-1),A⊙B=1×2+2×(-1),
即A⊕B=(3,1),A⊙B=0,故①正确;
②设C(x3,y3),则A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
而A⊕B=B⊕C,
所以x1+x2=x2+x3,y1+y2=y2+y3,则x1=x3,y1=y3
所以A=C,故②正确;
③A⊙B=x1x2+y1y2,B⊙C=x2x3+y2y3
而A⊙B=B⊙C,则x1x2+y1y2=x2x3+y2y3
不能得到x1=x3,y1=y3
所以A≠C,故③不正确;
④因为(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
所以(A⊕B)⊕C=A⊕(B⊕C),故④正确.
综上所述,正确的命题为①②④.
故答案为:①②④.

点评 本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.已知$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$ 与$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$是二元一次方程mx+ny=5的两组解,则m+n的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在?ABCD中,∠C=130°,BE平分∠ABC,则∠AEB等于(  )
A.55°B.45°C.35°D.25°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.直线y=2x+6与x轴的交点坐标为(  )
A.(-3,0)B.(3,0)C.(0,6)D.(0,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.要反映宁都县一天内气温的变化情况宜采用折线统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:-2a(3a2-a+3)+6a(a-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.
(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:
(2)将正方形EFGH绕点E顺时针方向旋转
①如图2,判断BH和AF的数量关系,并说明理由;
②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为$\sqrt{2}$,求正方形EFGH的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,平面直角坐标系中,O为坐标原点,正方形ABCO的两边OA、OC分别与x轴、y轴重合,点P是CB的中点,过点P的反比例函数y=$\frac{k}{x}$的图象交对角线OB与点Q,△COQ的面积为2,求k的值为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,已知菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2$\sqrt{2}$,BD=4,则菱形ABCD的面积为(  )
A.2$\sqrt{2}$B.4$\sqrt{2}$C.8$\sqrt{2}$D.16$\sqrt{2}$

查看答案和解析>>

同步练习册答案