精英家教网 > 初中数学 > 题目详情
12.如图,将四边形ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF,若AE∥CF且AE=CF.
(1)求证:△ABE≌△CDF;
(2)若AC⊥EF,求证:四边形ABCD是菱形.

分析 (1)根据SAS可证△ABE≌△CDF;
(2)根据全等三角形的性质和平行四边形的判定可得四边形ABCD是平行四边形,再根据菱形的判定即可求解.

解答 证明:(1)∵AE∥CF,
∴∠E=∠F,
在△ABE与△CDF中,
$\left\{\begin{array}{l}{AE=CF}\\{∠E=∠F}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△CDF;
(2)∵△ABE≌△CDF,
∴AB=CD,∠ABE=∠CDF,
∴∠ABD=∠CDB,
∴AB∥CD,
∴四边形ABCD是平行四边形,
∵AC⊥EF,即AC⊥DB,
∴平行四边形ABCD是菱形.

点评 此题主要考查了平行四边形的性质和判定、菱形的判定以及全等三角形的判定与性质,关键是掌握平行四边形的判定、菱形的判定方法和全等三角形的判定方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则可列一元二次方程为x2-x-56=0.(化用一般式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解不等式(或组),并把解集在数轴上表示出来
(1)$\frac{x-1}{3}$-$\frac{3x+5}{6}$≥-2
(2)$\left\{\begin{array}{l}{\frac{x-3}{2}+3≥x+1}\\{1-3(x-1)<8-x}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知∠MAN和线段a,用尺规作等腰△ABC,使顶角为∠MAN,底边上的中线长为a,并写出所依据的主要定理.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,在正方形ABCD的外侧,作两个等边三角形ADE和DCF,连接AF、BE.

(1)请判断AF与BE的关系并给予证明;
(2)如图2,若将条件“两个等边三角形ADE和DCF变为两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;
(3)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论是否仍然成立?请直接写出判断结果.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某服装店专营一批进价为每件200元的品牌衬衫,每件售价为300元,每天可售出40件,若每件降价10元,则每天多售出10件,请根据以上信息解答下列问题:
(1)为了使销售该品牌衬衫每天获利4500元,并且让利于顾客,每件售价应为多少元;
(2)该服装店将该品牌的衬衫销售完,在补货时厂家只剩100件库存,经协商每件降价a元,全部拿回.按(1)中的价格售出80件后,剩余的按八折销售,售完这100件衬衫获利50%,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E为BC的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)若EC=3,BD=2$\sqrt{6}$,求AC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在矩形ABCD中,AB=5,BC=8,点E为BC上一动点,把△ABE沿AE折叠;若点E是BC边的中点,点B落在点F处,连接CF.
(1)求证:AE∥CF.
(2)求Sin∠ECF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简(1-$\frac{1}{x-2}$)÷($\frac{x+2}{{x}^{2}-4}$),再求x=1时代数式的值.

查看答案和解析>>

同步练习册答案