分析 (1)由点A的纵坐标求得m,即点A的坐标,把点A的坐标代入反比例函数中即可;
(2)方法一、先求出PM,再求出BN然后用锐角三角函数求出OB,即可.
方法二、先设出点P的坐标,利用△POA的面积为2.建立方程求出点P的坐标,即可得出结论.
解答 解:(1)∵点A(m,2)在直线y=2x,
∴2=2m,
∴m=1,
∴点A(1,2),
∵点A(1,2)在反比例函数y=$\frac{k}{x}$上,
∴k=2,
(2)方法一、如图,
设平移后的直线与y轴相交于B,过点P作PM⊥OA,BN⊥OA,AC⊥y轴
由(1)知,A(1,2),
∴OA=$\sqrt{5}$,sin∠BON=sin∠AOC=$\frac{AC}{OA}$=$\frac{\sqrt{5}}{5}$,
∵S△POA=$\frac{1}{2}$OA×PM=$\frac{1}{2}$×$\sqrt{5}$PM=2,
∴PM=$\frac{4\sqrt{5}}{5}$,
∵PM⊥OA,BN⊥OA,
∴PM∥BN,
∵PB∥OA,
∴四边形BPMN是平行四边形,
∴BN=PM=$\frac{4\sqrt{5}}{5}$,
∵sin∠BON=$\frac{BN}{OB}$=$\frac{\frac{4\sqrt{5}}{5}}{OB}$=$\frac{\sqrt{5}}{5}$,
∴OB=4,
∵PB∥AO,
∴B(0,-4),
∴平移后的直线PB的函数解析式y=2x-4,
方法二、如图1,过点P作PC⊥y轴交OA于C,
设点P的坐标为(n,$\frac{2}{n}$)(n>1),
∴C($\frac{1}{n}$,$\frac{2}{n}$),∴PC=n-$\frac{1}{n}$,
∵△POA的面积为2.A(1,2)
∴S△POA=S△PCO+S△PCA
=$\frac{1}{2}$(n-$\frac{1}{n}$)×$\frac{2}{n}$+$\frac{1}{2}$(n-$\frac{1}{n}$)(2-$\frac{2}{n}$)
=$\frac{1}{2}$(n-$\frac{1}{n}$)×2
=n-$\frac{1}{n}$
=2,
∴n=1-$\sqrt{2}$(舍)或n=1+$\sqrt{2}$,
∴P(1+$\sqrt{2}$,2$\sqrt{2}$-2)
∴PB∥AO,
∴设直线PB的解析式为y=2x+b,
∵点P在直线PB上,
∴2$\sqrt{2}$-2=2(1+$\sqrt{2}$)+b,
∴b=-4,
∴平移后的直线PB的函数解析式y=2x-4,
点评 此题是反比例函数和一次函数的交点问题,主要考查了函数解析式的确定方法,平行四边形的判定和性质,锐角三角函数的意义,解本题的关键是作出辅助线.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 90° | B. | 80° | C. | 60° | D. | 100° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1:3 | B. | 1:4 | C. | 1:5 | D. | 1:9 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5,5,$\frac{3}{2}$ | B. | 5,5,10 | C. | 6,5.5,$\frac{11}{6}$ | D. | 5,5,$\frac{5}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com