精英家教网 > 初中数学 > 题目详情

【题目】AB两地相距50km,甲于某日骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量skm)表示,甲所用的时间用变量t(时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程s与时间t的变化关系,请根据图象回答:

1)直接写出:甲出发后______小时,乙才开始出发;

2)请分别求出甲出发1小时后的速度和乙的行驶速度?

3)求乙行驶几小时后追上甲,此时两人距B地还有多少千米?

【答案】(1)1;(2)甲:25km/h,乙:10km/h;(3)乙行驶小时后追上甲,此时两人距地还有千米

【解析】

(1)观察函数图象得到甲出发后1小时,乙才开始出发;

(2)根据路程除以时间等于速度,列式求解即可得到答案;

(3)设乙行驶小时后追上甲,根据题意得,求解即可得到答案;

解:(1)观察函数图象得到甲出发后1小时,乙才开始出发,

故填:1

2)由图像信息可知:乙的速度为:千米/时,

甲出发1小时后的速度为:千米/时.

3)设乙行驶小时后追上甲,结合图片信息和(2)的结果得到:

解得

即乙行驶小时后追上甲,此时两人距地还有(千米);

答:乙行驶小时后追上甲,此时两人距地还有千米;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】操作探究:

1)实践:如图1 中,边上的中线,的面积记为的面积记为.则

2)探究:在图2中,分别为四边形的边的中点,四边形的面积记为,阴影部分面积记为,则之间满足的关系式为______

3)解决问题:

在图3中,分别为任意四边形的边的中点,并且图中阴影部分的面积为平方厘米,求图中四个小三角形的面积和,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种事物经历了加热,冷却两个联系过程,折线图DEF表示食物的温度y(℃)与时间x(s)之间的函数关系(0≤x≤160),已知线段EF表示的函数关系中,时间每增加1s,食物温度下降0.3℃,根据图象解答下列问题;

(1)当时间为20s、100s时,该食物的温度分别为℃,℃;
(2)求线段DE所表示的y与x之间的函数表达式;
(3)时间是多少时,该食物的温度最高?最高是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在菱形ABCD中,对角线ACBD相交于点ODE∥ACAE∥BD

(1)、求证:四边形AODE是矩形;(2)、若AB6∠BCD120°,求四边形AODE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC,△CDE均为等边三角形(每个内角都是60°),连接BDAE交于点OBCAE交于点P.试说明:∠POB=60°.经过观察分析,解题的关键是先利用( )说明△EAC≌△DBC

A.SSSB.ASAC.SASD.AAS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点为平面内一点.

1)如图1互余,小明说过,很容易说明。请帮小明写出具体过程;

2)如图2,当点在线段上移动时(点两点不重合),指出的数量关系?请说明理由;

3)在(2)的条件下,若点两点外侧运动(点三点不重合)请直接写出的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:

跳绳数/个

81

85

90

93

95

98

100

人 数

1

2

8

11

5

将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).

(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:RtABC中,∠C90°,ACBC2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BCAC交于DE两点(DE不与BA重合).

1)求证:MDME

2)求四边形MDCE的面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(1,0)、B(3,0).抛物线y=x2﹣2mx+m2﹣4的顶点为P,与y轴的交点为Q.

(1)填空:点P的坐标为;点Q的坐标为(均用含m的代数式表示)
(2)当抛物线经过点A时,求点Q的坐标.
(3)连接QA、QB,设△QAB的面积为S,当抛物线与线段AB有公共点时,求S与m之间的函数关系式.
(4)点P、Q不重合时,以PQ为边作正方形PQMN(P、Q、M、N分别按顺时针方向排列).当正方形PQMN的四个顶点中,位于x轴两侧或y轴两侧的顶点个数相同时,直接写出此时m的取值范围.

查看答案和解析>>

同步练习册答案