精英家教网 > 初中数学 > 题目详情
如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q,设线段PQ的长为l,点P的横坐标为x.
(1)求出l与x之间的函数关系式,并求出l的取值范围;
(2)在线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标及梯形PQMA的面积;若不存在,请说明理由;
(3)当2<x<6时,延长PQ、AM交于F,连接NF、PM,求证:NF⊥PM.
分析:(1)根据直线y=x+2的解析式求出A点的坐标,根据A、B的坐标求出抛物线的解析式,由PQ⊥x轴得P、Q的横坐标为x,最后用纵坐标的差表示出来就可.根据A、B两点的纵坐标就可以求出取值范围.
(2)过点M作MQ∥AB交抛物线于点Q,连接AM,作PQ∥y轴于点P,过M作MD∥PQ,MD交AB于N,得出四边形PQMD为平行四边形,可以求出MD的长度,从而求出P点的坐标和梯形的面积.
(3)由直线y=x+2和抛物线y=
1
2
(x-2)2
可以求出OA=ON=OM=2,可以得出FA⊥NP,由NE⊥PF,所以有点M是△PNF的垂心,从而得出结论.
解答:解:(1)∵抛物线的顶点为M(2,0),
∴设其解析式为y=a(x-2)2
∵抛物线经过直线y=x+2与y轴的交点A(0,2),
a=
1
2

∴抛物线的解析式为y=
1
2
(x-2)2

∵PQ⊥x轴且横坐标为x,
l=(x+2)-
1
2
(x-2)2=-
1
2
x2+3x

y=x+2
y=
1
2
(x-2)2
得点B的坐标为B(6,8),
∵点p在线段AB上运动,
∴0<x<6.
l=-
1
2
x2+3x=-
1
2
(x-3)2+
9
2

∴当x=3时,l最大=
9
2

0<l<
9
2
.…(5分)

(2)作MQ∥AP.过M作MD∥PQ,MD交AB于N,
则四边形PQMD为平行四边形.
∴MD=PQ,∵M(2,0),∴D(2,4),∴MD=4.
PQ=-
1
2
x2+3x=MD=4

∴x2-6x+8=0,∴x1=2,x2=4.
∵2<x<6,∴x=4.
∴P(4,6),Q(4,2).
∴存在点P(4,6),使四边形PQMA为梯形.
如图,

S梯形PQMA=S梯形PEOA-S△AOM-S△MQE
=
1
2
(2+6)×4-
1
2
×2×2-
1
2
×2×2=12


(3):∵直线y=x+2与x轴,y轴相交于点N,A.
∴ON=OA=2,又y=
1
2
(x-2)2
∵OA=OM=2.

∴FA⊥NP,
∵NE⊥PF,
∴点M是△PNF的垂心.
∴NF⊥PM.
点评:本题是一道二次函数的综合试题,考查了待定系数法求二次函数的解析式,梯形的性质的运用及梯形的面积,三角形的垂心的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•高淳县一模)如图,已知二次函数y=-
1
2
x2+mx+3的图象经过点A(-1,
9
2
).
(1)求该二次函数的表达式,并写出该函数图象的顶点坐标;
(2)点P(2a,a)(其中a>0),与点Q均在该函数的图象上,且这两点关于图象的对称轴对称,求a的值及点Q到y轴的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)如图,已知二次函数y=ax2+bx+3的图象过点A(-1,0),对称轴为过点(1,0)且与y轴平行的直线.
(1)求该二次函数的关系式;
(2)结合图象,解答下列问题:
①当x取什么值时,该函数的图象在x轴上方?
②当-1<x<2时,求函数y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ的长为l,点P的横坐标为x.
(1)求二次函数的解析式;
(2)求l与x之间的函数关系式,并求出l的取值范围;
(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=(x-1)2的图象的顶点为C点,图象与直线y=x+m的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求m的值;
(2)点P为线段AB上的一个动点(点P与A、B不重合),过点P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数解析式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案