【题目】如图,在△ABC中,AB=AC=10,BC=16,点D为BC边上的一个动点(点D不与点B、点C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F.
(1)求证:ABCE=BDCD;
(2)当DF平分∠ADC时,求AE的长;
(3)当△AEF是等腰三角形时,求BD的长.
【答案】(1)见解析;(2)AE=;(3)BD的长为11或
或
.
【解析】
(1)根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAD=∠CDE,得到△BAD∽△CDE,根据相似三角形的性质证明结论;
(2)证明,根据平行线的性质得到
=
,证明△BDA∽△BAC,根据相似三角形的性质列式计算,得到答案;
(3)分点F在DE的延长线上、点F在线段DE上两种情况,根据等腰三角形的性质计算即可.
(1)证明:∵AB=AC,
∴∠B=∠C,
∠ADC=∠BAD+∠B,∠ADE=∠B,
∴∠BAD=∠CDE,又∠B=∠C,
∴△BAD∽△CDE,
∴=
,即ABCE=BDCD;
(2)解:∵DF平分∠ADC,
∴∠ADE=∠CDE,
∵∠CDE=∠BAD,
∴∠ADE=∠BAD,
∴,
∴=
,
∵∠BAD=∠ADE=∠B,
∴∠BAD=∠C,又∠B=∠B,
∴△BDA∽△BAC,
∴=
,即
=
解得,BD=,
∴=
,
解得,AE=;
(3)解:作AH⊥BC于H,
∵AB=AC,AH⊥BC,
∴BH=HC=BC=8,
由勾股定理得,AH==
=6,
∴tanB==
,
∴tan∠ADF==
,
设AF=3x,则AD=4x,
由勾股定理得,DF==5x,
∵△BAD∽△CDE,
∴=
,
当点F在DE的延长线上,FA=FE时,DE=5x﹣3x=2x,
∴=
,
解得,CD=5,
∴BD=BC﹣CD=11,
当EA=EF时,DE=EF=2.5x,
∴=
,
解得,CD=,
∴BD=BC﹣CD=;
当AE=AF=3x时,DE=x,
∴=
,
解得,CD=,
∴BD=BC﹣CD=;
当点F在线段DE上时,∠AFE为钝角,
∴只有FA=FE=3x,则DE=8x,
∴=
,
解得,CD=20>16,不合题意,
∴△AEF是等腰三角形时,BD的长为11或或
.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线(a≠0)的对称轴为直线
,且抛物线经过A(1,0),C(0,3)两点,与
轴交于点B.
(1)若直线经过B,C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴上找一点M,使MA+MC的值最小,求点M的坐标;
(3)设P为抛物线的对称轴上的一个动点,求使ΔBPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:一个多边形上任意两点间距离的最大值称为该多边形的“直径”.现有两个全等的三角形,边长分别为4、4、.将这两个三角形相等的边重合拼成对角线互相垂直的凸四边形,那么这个凸四边形的“直径”为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点A,B在x轴的负半轴上,反比例函数y=(k1≠0)在第二象限内的图象经过正方形ABCD的顶点D(m,2)和BC边上的点G(n,
),直线y=k2x+b(k2≠0)经过点D,点G,则不等式
≤k2x+b的解集为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为调查越城区2019年空气质量情况,小强同学从区环保局调取了2019年全年365天的空气质量(AQI)数据,并从中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
(1)请求出统计表中m、n的值;
(2)补全条形统计图,并通过计算估计越城区2019年全年空气质量等级为“优”和“良”的天数;
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因.据此,请你提出一条合理化建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为探究函数的图象和性质,需要画出函数图象,列表如下:
…… | …… | |||||||||||
…… | …… |
根据上表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.
(1)请你帮小明画出完整的的图象;
(2)观察函数图象,请写出这个函数的两条性质:
性质一: ;
性质二: .
(3)利用上述图象,探究函数图象与直线
的关系;
①当 时, 直线
与函数
在第一象限的图象有一个交点
,则
的坐标是 ;
②当为何值时,讨论函数
的图象与直线
的交点个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线、过点F作AB的平行线,两平行线相交于点G,连接BG.
(1)若AE=2.5,CD=3,BD=2,求AB的长;
(2)若∠CBE=30°,求证:CG=AD+EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级共有800名学生,准备调查他们对“低碳”知识的了解程度.
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查七年级部分女生;
方案二:调查七年级部分男生;
方案三:到七年级每个班去随机调查一定数量的学生.
请问其中最具有代表性的一个方案是 ;
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;
(3)在扇形统计图中,“比较了解”所在扇形的圆心角的度数是 .
(4)请你估计该校七年级约有 名学生比较了解“低碳”知识.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com