精英家教网 > 初中数学 > 题目详情
已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.
(1)如图1,当点E在直径AB上时,试证明:OE•OP=r2
(2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.

【答案】分析:(1)如图,连接FO并延长交⊙O于Q,连接DQ.由FQ是⊙O直径得到∠QFD+∠Q=90°,又由CD⊥AB得到∠P+∠C=90°,然后利用已知条件即可得到∠QFD=∠P,然后即可证明△FOE∽△POF,最后利用相似三角形的性质即可解决问题;
(2)(1)中的结论成立. 如图2,依题意画出图形,连接FO并延长交⊙O于M,连接CM.由FM是⊙O直径得到∠M+∠CFM=90°,又由CD⊥AB,得到∠E+∠D=90°,接着利用已知条件即可证明∠CFM=∠E,然后利用已知条件证明△POF∽△FOE,最后利用相似三角形的性质即可证明题目的结论.
解答:(1)证明:如图1,连接FO并延长交⊙O于Q,连接DQ.
∵FQ是⊙O直径,
∴∠FDQ=90°.
∴∠QFD+∠Q=90°.
∵CD⊥AB,
∴∠P+∠C=90°.
∵∠Q=∠C,
∴∠QFD=∠P.
∵∠FOE=∠POF,
∴△FOE∽△POF.

∴OE•OP=OF2=r2

(2)解:(1)中的结论成立.
理由:如图2,依题意画出图形,连接FO并延长交⊙O于M,连接CM.
∵FM是⊙O直径,
∴∠FCM=90°,
∴∠M+∠CFM=90°.
∵CD⊥AB,
∴∠E+∠D=90°.
∵∠M=∠D,
∴∠CFM=∠E.
∵∠POF=∠FOE,
∴△POF∽△FOE.

∴OE•OP=OF2=r2
点评:此题分别考查了相似三角形的性质与判定、垂径定理及圆周角定理,同时也考查了简单的作图问题,解题的关键是充分利用相似三角形的性质证明题目的结论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(结果精确到0.01米)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:
3
,AB=10米,AE=15米.(i=1:
3
是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
2
1.414,
3
1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

红星中学篮球课外活动小组的同学自己动手制作一副简易篮球架.如图,是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(计算结果精确到0.01米,参考数据:(sin40°≈0.588,cos40°≈0.809,tan40°≈0.727.)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知线段AB=4,点C是平面上一点(不与A,B重合),M、N分别是线段CA,CB的中点.
(1)当C在线段AB上时,如图,求MN的长;
(1)当C在线段AB的延长线上时,画出图形,并求MN长;
(2)当C在直段AB外时,画出图形,量一量,写出MN的长(不写理由)

查看答案和解析>>

同步练习册答案