精英家教网 > 初中数学 > 题目详情
我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是     (写出1个即可).
(答案不唯一)。
如图,根据“面径”有定义,

(1)等边三角形的高AD是三角形的最大面径,
(2)当EF∥BC时,若EF为面径,则EF是三角形的最小面径:

∴它的面径长可以是(或介于之间的任意一个实数)。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:

(1)△ADE≌△CDF;
(2)四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图,ΔABC中,∠ABC=50°,∠ACB=70°,D为边BC上一点(D与B、C不重合),连接AD,∠ADB的平分线所在直线分别交直线AB、AC于点E、F. 求证:2∠AED-∠CAD=170°;

(2)若∠ABC=∠ACB=n°,且D为射线CB上一点,(1)中其他条件不变,请直接写出∠AED与∠CAD的数量关系.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.

(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一个多边形的内角和是外角和的,则这个多边形的边数是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离A A'是(   )
A.-1B.C.1D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.

(1)画一个底边为4,面积为8的等腰三角形;
(2)画一个面积为10的等腰直角三角形;
(3)画一个面积为12的平行四边形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案:

(1)小明是在n边形内取一点P,然后分别连结PA1PA2、…、PAn(如图1);
(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).
请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.

查看答案和解析>>

同步练习册答案