精英家教网 > 初中数学 > 题目详情
(2009•金华)如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.
(1)求梯形ABCD面积;
(2)求图中阴影部分的面积.

【答案】分析:要求梯形ABCD面积,已知下底AB,上底CD,只要求出高就可以,高即是弦CD的弦心距,根据垂径定理,就可以求出;
求图中阴影部分的面积,可以连接OC,OD,转化为求扇形的面积与△OCD的面积的差的问题.
解答:解:(1)连接OC,OD,过点O作OE⊥CD于点E.(1分)
∵OE⊥CD,∴CE=DE=5,(1分)
∴OE==5,(2分)
∴S梯形ABCD=(AB+CD)OE=75(cm2).(1分)

(2)∵S扇形=×100•π=π(cm2)(1分)
S△OCD=•OE•CD=25(cm2)(1分)
∴S阴影=S扇形-S△OCD=(π-25)cm2
∴阴影部分的面积为(π-25)cm2.(1分)
点评:不规则图形的面积可以转化为一些规则图形的面积的和或差的问题求解.
练习册系列答案
相关习题

科目:初中数学 来源:2011年3月黑龙江省大庆市第六十三中学月考数学试卷(解析版) 题型:解答题

(2009•金华)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2009•金华)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《四边形》(11)(解析版) 题型:解答题

(2009•金华)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2009•金华)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省金华市中考数学试卷(解析版) 题型:解答题

(2009•金华)如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0).
(1)当t=4时,求直线AB的解析式;
(2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积;
(3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案