精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DEBC,垂足为E.

(1)求证:CD平分∠ACE;

(2)若AC=9,CE=3,求CD的长.

【答案】(1)证明见解析;(2)

【解析】分析: (1)根据圆内接四边形的性质得到∠DCE=∠BAD,根据圆周角定理得到∠DCE=∠BAD,证明即可;

(2)证明△DCE∽△ACD,根据相似三角形的性质列出比例式,计算即可.

详解:

(1)证明:∵四边形ABCD是⊙O内接四边形,

∴∠BAD+BCD=180°,

∵∠BCD+DCE=180°,

∴∠DCE=BAD,

=

∴∠BAD=ACD,

∴∠DCE=ACD,

CD平分∠ACE;

(2)解:∵AC为直径,

∴∠ADC=90°,

DEBC,

∴∠DEC=90°,

∴∠DEC=ADC,

∵∠DCE=ACD,

∴△DCE∽△ACD,

=,即=

CD=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与ABC相似,则点E的坐标不可能是

A.(6,0) B.(6,3) C.(6,5) D.(4,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,B、C、D在同一直线上,△ABC△ECD都是等边三角形,BEAD相交于点M,

(1)求证:∠CBE=∠CAD;

(2)由(1)可知,图中的△EBC是由△DAC怎样变换(填一种变换)得到的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大圆的弦ABAC分别切小圆于点MN

1)求证:AB=AC

2AB8,求圆环的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,且BE=BD,连结AEDEDC

①求证:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是-2.

(1)求这条直线的解析式及点B的坐标;

(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形OABC,点O为坐标原点,点Ay轴正半轴上,点Cx轴正半轴上,OA4OC6,点EOC的中点,将△OAE沿AE翻折,使点O落在点O处,作直线CO',则直线CO'的解析式为(  )

A.y=﹣x+6B.y=﹣x+8C.y=﹣x+10D.y=﹣x+8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为﹣1,过点C(0,3)的直线y=﹣x+3x轴交于点Q,点P是线段BC上的一个动点,PHOB于点H.若PB=5t,且0<t<1.

(1)确定b,c的值;

(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);

(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一座抛物线形拱桥,正常水位时桥下水面宽为20m,拱顶距水面4m.

(1)在如图的直角坐标系中,求出该抛物线的解析式;

(2)为保证过往船只顺利航行,桥下水面宽度不得小于18m,求水面在正常水位基础上,最多涨多少米,不会影响过往船只?

查看答案和解析>>

同步练习册答案