精英家教网 > 初中数学 > 题目详情

现有一个由6块长为2cm、宽为1cm的长方形组成的网格,△ABC的顶点都是网格中的格点,则cos∠ABC的值


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:根据题意可得∠D=90°,AD=3×1=3(cm),BD=2×2=4(cm),然后由勾股定理求得AB的长,又由余弦的定义,即可求得答案.
解答:解:如图,∵由6块长为2cm、宽为1cm的长方形,
∴∠D=90°,AD=3×1=3(cm),BD=2×2=4(cm),
∴在Rt△ABD中,AB==5(cm),
∴cos∠ABC==
故选D.
点评:此题考查了锐角三角函数的定义以及勾股定理.此题比较简单,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、四年一度的国际数学家大会会标如图甲,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.现有一张长为6.5cm、宽为2cm的纸片,如图乙,请你根据图甲的启示将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方图甲形并标明相应数据)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图(1).它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.
(2)现有一张长为6.5cm,宽为2cm的纸片,如图(2),请你将它分割成6块,再拼合成一个正方形.
(要求:先在图(2)中画出分割线,再画出拼成的正方形并标明相应数据)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),有A型、B型、C型三种不同的纸板,其中A形是边长为m的正方形,B型是长为m、宽为n的长方形,C型是边长为n的正方形.由图(2)中四块纸板拼成的正方形的面积关系可以说明(m+n)2=m2+2mn+n2成立.

(1)类似地,由图(3)中六块纸板拼成的大长方形的面积关系可以说明的等式是
(m+n)(2m+n)=2m2+3mn+n2
(m+n)(2m+n)=2m2+3mn+n2

(2)现有A型纸板2块,B型纸板5块,C型纸板2块,要求紧密且不重叠地拼出一个大长方形,如果纸板最多剩一块,请画出所有可能拼出的大长方形的示意图;类似地,根据所拼出的大长方形的面积关系写出可以说明的等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

四年一度的国际数学家大会会标如图甲.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.现有一张长为6.5cm、宽为2cm的纸片,如图乙,请你根据图甲的启示将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方图甲形并标明相应数据)

查看答案和解析>>

同步练习册答案