精英家教网 > 初中数学 > 题目详情

已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.
(1)求此抛物线的解析式;
(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

(1)y=﹣x2+x﹣3;(2)存在,D点坐标为(2,

解析试题分析:(1)由直线的解析式y=x﹣3,可先求出与坐标轴的交点坐标C点坐标为(0,﹣3),A点坐标为(4,0),然后把A点和C点坐标代入y=﹣x2+mx+n中得到关于m、n的方程组,解方程组求出m、n即可得到抛物线的解析式;
(2)过D点作直线AC的平行线y=kx+b,要使△ACD的面积最大,则直线y=kx+b与抛物线只有一个公共点,点D到AC的距离最大,根据两直线平行问题得到k= ,过点D的直线解析式为y= x+b,然后把它与抛物线解析式组成方程组,利用方程组只有一组解和判别式的意义确定b的值,再得到方程组的解,从而得到D点坐标.
试题解析:(1)把x=0代入y=x﹣3得y=﹣3,则C点坐标为(0,﹣3),
把y=0代入y=x﹣3得x﹣3=0,解得x=4,则A点坐标为(4,0),
把A(4,0),C(0,﹣3)代入y=﹣x2+mx+n得
解得
所以二次函数解析式为y=﹣x2+x﹣3;
(2)存在.
过D点作直线AC的平行线y=kx+b,当直线y=kx+b与抛物线只有一个公共点时,点D到AC的距离最大,此时△ACD的面积最大,
∵直线AC的解析式为y=x﹣3,
∴k=,即y=x+b,
由直线y=x+b和抛物线y=﹣x2+x﹣3组成方程组得,消去y得到3x2﹣12x+4b+12=0,
∴△=122﹣4×3×(4b+12)=0,解得b=0,
∴3x2﹣12x+12=0,解得x1=x2=2,
把x=2,b=0代入y=x+b得y=
∴D点坐标为(2,).
考点:1.待定系数法求二次函数解析式;2.二次函数图象上点的坐标特征.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

如图,抛物线与x轴正半轴交于点A(3,0).以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF,.则a=    ,点E的坐标是         .

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分.则水喷出的最大高度是   千米.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

抛物线先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是       

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与x轴交于A,B两点,对称轴为直线,直线AD交抛物线于点D(2,3).

(1)求抛物线的解析式;
(2)已知点M为第三象限内抛物线上的一动点,当点M在什么位置时四边形AMCO的面积最大?并求出最大值;
(3)当四边形AMCO面积最大时,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线BC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线图象经过A(-1,0),B(4,0)两点.
(1)求抛物线的解析式;
(2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.
①求证:四边形DECF是矩形;
②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).
(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;
(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;
(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,抛物线经过点(0,),(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点关于原点的对称点为,点是抛物线对称轴上一动点,记抛物线在之间的部分为图象(包含两点).若直线与图象有公共点,结合函数图像,求点纵坐标的取值范围.

查看答案和解析>>

同步练习册答案