精英家教网 > 初中数学 > 题目详情
如图,已知反比例函数y=
k
x
过点P,P点的坐标为(3-m,2m),m是分式方程
m-3
m-2
+1=
3
2-m
的解,PA⊥x轴于点A,PB⊥y轴于点B.
(1)试判断四边形PAOB的形状,并说明理由;

(2)连接AB,E为AB上的一点,EF⊥BP于点F,G为AE的中点,连接OG、FG,试问FG和OG有何数量关系?请写出你的结论并证明;

(3)若M为反比例函数y=
k
x
在第三象限内的一动点,过M作MN⊥x轴于交AB的延长线于点N,是否存在一点M使得四边形OMNB为等腰梯形?若存在,请求出M点的坐标;若不存在,请说明理由.
(1)四边形PAOB是正方形.
理由如下:
∵∠AOB=∠OBP=∠OAP=90°
∴四边形PAOB是矩形(2分)
m-3+m-2=-3
解得:m=1
经检验知m=1是原分式方程的解
∴P(2,2)(3分)
∴PB=PA=2
∴四边形PAOB是正方形;(4分)

(2)OG=FG.
证明:延长FE交OA于点H,连接GH,
∵∠HFB=∠FBO=∠BOH=90°
∴BOHF是矩形
∴BF=OH
∵∠FBE=∠FEB=45°
∴EF=BF=OH(5分)
∵∠EHA=90°,G为AE的中点
∴GH=GE=GA(6分)
∴∠GEH=∠GAH=45°
∴∠GEF=∠GHO(7分)
∴△GEF≌△GHO
∴OG=FG;(8分)

(3)由题意知:∠BNM=45°(9分)
∵要让四边形OBNM为等腰梯形
∴∠BNM=∠NMO=45°(10分)
∴设M点的坐标为(x,x),代入y=
4
x

∴x=±2
∵M是y=
k
x
第三象限上一动点
∴x=-2
∴M点的坐标为(-2,-2).(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
12
x
的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a和a+2,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)所示,正比例函数y=kx与反比例函数y=
t
x
的图象交于点A(-3,2).


(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)如图(2)所示,P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.
(4)在第(3)问条件中,连接AP,若∠PAO=90°,试求分式m2+
16
m2
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知反比例函数y=
m
x
的图象经过点N,则此反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,ADx轴,AD=10,原点O是对角线AC的中点,顶点A的坐标为(-4,4),反比例函数y=
k
x
(k≠0)在第一象限的图象过四边形ABCD的顶点D.
(1)求直线AC和反比例函数的解析式;
(2)平行四边形ABCD的顶点B是否在反比例函数的图象上?为什么?
(3)P、Q两点分别在反比例函数图象的两支上,且AQCP是菱形,求P、Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知y=y1+y2,y1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7.
(1)求y与x的函数关系式;
(2)当y=5时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=k和双曲线y=
k
x
相交于点P,过P点作PA0垂直于x轴,垂足为A0,x轴上的点A0,A1,A2的横坐标是连续的整数,过点A1,A2别作x轴的垂线,与双曲线y=
k
x
(x>0)及直线y=k分别交于点B1,B2,C1,C2
(1)求A0点坐标;
(2)求
C1B1
A1B1
C2B2
A2B2
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系内有函数y=
1
2x
(x>0)和一条直线的图象,直线与x、y轴正半轴分别交于点A和点B,且OA=OB=1,点P为曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴作垂线PM、PN(M、N为垂足)分别与直线AB相交于点E和点F.
(1)如果交点E、F都在线段AB上(如图),分别求出E、F点的坐标(只需写出答案.不需写出计算过程);
(2)当点P在曲线上移动,试求△OEF的面积(结果可用a、b的代数式表示);
(3)如果AF=
6
2
,求
OF
OE
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知点P是反比例函数y=
-2
x
(x<0)图象上的一个动点,⊙P的半径为1,当⊙P与坐标轴相交时,点P的横坐标x的取值范围是______.

查看答案和解析>>

同步练习册答案