精英家教网 > 初中数学 > 题目详情

【题目】综合题。
(1)计算:(π﹣ 0+ +(﹣1)2013 tan60°;
(2)先化简,再求值:(a+3)2+a(4﹣a),其中a为(1)中计算的结果.

【答案】
(1)

解:原式=1+2﹣1﹣3=﹣1


(2)

解:原式=a2+6a+9+4a﹣a2=10a+9,

当a=﹣1时,原式=﹣10+9=﹣1


【解析】(1)原式利用零指数幂法则,立方根定义,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.
【考点精析】利用零指数幂法则和完全平方公式对题目进行判断即可得到答案,需要熟知零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);首平方又末平方,二倍首末在中央.和的平方加再加,先减后加差平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的不等式x﹣1.

(1)当m=1时,求该不等式的解集;

(2)m取何值时,该不等式有解,并求出解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出 =83分, =82分,绘制成如下尚不完整的统计图表. 甲、乙两人模拟成绩统计表

甲成绩/分

79

86

82

a

83

乙成绩/分

88

79

90

81

72

根据以上信息,回答下列问题:
(1)a=
(2)请完成图中表示甲成绩变化情况的折线.
(3)经计算S2=6,S2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.
(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为3,将等腰直角三角板的45°角的顶点放在点B处,直角顶点FCD的延长线上,BFAD交于点G,斜边与CD交于点E,CE=1,则DG的长为( )

A. B. C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=24 cm, BC=8 cm,点P从点A开始沿折线A-B-C-D4 cm/s的速度移动,点Q从点C开始沿CD边以2 cm/s的速度移动,如果点PQ分别从点AC同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为ts.t为何值时,四边形QPBC为矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

(1)观察猜想

如图1,当点D在线段BC上时,

①BC与CF的位置关系为:   

②BC,CD,CF之间的数量关系为:   ;(将结论直接写在横线上)

(2)数学思考

如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)拓展延伸

如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读)|4﹣1|表示41差的绝对值,也可以理解为41两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.

(1)|4﹣(﹣1)|=   

(2)|5+2|=   

(3)利用数轴找出所有符合条件的整数x,使得|x+3|=5,则x=   

(4)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣2|=5,这样的整数是:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点ABC的三个顶点A,B,C都在格点上ABC绕点A按顺时针方向旋转90°得到AB′C′

1在正方形网格中,画出AB′C′;

2计算线段AB在变换到AB′的过程中扫过的区域的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过抛物线y= x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.

(1)求抛物线的对称轴和点B的坐标;
(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;
①连结BD,求BD的最小值;
②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.

查看答案和解析>>

同步练习册答案