精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是(  )
A.1B.2C.3D.4

作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.
在y=-3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).
令y=0,解得:x=1,即A的坐标是(1,0).
则OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
∵在△OAB和△FDA中,
∠DAF=∠OBA
∠BOA=∠AFD
AB=AD

∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐标是(4,1),C的坐标是(3,4).代入y=
k
x
得:k=4,则函数的解析式是:y=
4
x

∴OE=4,
则C的纵坐标是4,把y=4代入y=
4
x
得:x=1.即G的坐标是(1,4),
∴CG=2.
故选:B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
12
x
的图象和一次函数y=kx-7的图象都经过点P(m,2).
(1)求这个一次函数的解析式;
(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,且A和B的横坐标分别为a和a+2,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分).
(1)开始学习后第5分钟时与第35分钟时相比较,何时学生的注意力更集中?为什么?
(2)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知--自主探索,合作交流--总结归纳,巩固提高”.其中重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不底于40.请问这样的课堂学习安排是否合理?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1)所示,正比例函数y=kx与反比例函数y=
t
x
的图象交于点A(-3,2).


(1)试确定上述正比例函数与反比例函数的解析式;
(2)根据图象回答,在第二象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)如图(2)所示,P(m,n)是反比例函数图象上的一动点,其中-3<m<0,过点P作直线PBx轴,交y轴于点B,过点A作直线ADy轴,交x轴于点D,交直线PB于点C.当四边形OACP的面积为6时,请判断线段BP与CP的大小关系,并说明理由.
(4)在第(3)问条件中,连接AP,若∠PAO=90°,试求分式m2+
16
m2
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知反比例函数y=
m
x
的图象经过点N,则此反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,ADx轴,AD=10,原点O是对角线AC的中点,顶点A的坐标为(-4,4),反比例函数y=
k
x
(k≠0)在第一象限的图象过四边形ABCD的顶点D.
(1)求直线AC和反比例函数的解析式;
(2)平行四边形ABCD的顶点B是否在反比例函数的图象上?为什么?
(3)P、Q两点分别在反比例函数图象的两支上,且AQCP是菱形,求P、Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:等腰△OAB在直角坐标系中的位置如图,点A坐标为(-3
3
,3),点B坐标为(-6,0).
(1)若将△OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=
6
3
x
的图象上,求a的值;
(2)若△OAB绕点O按逆时针方向旋转α度(0<α<360).
①当α=30°时,点B恰好落在反比例函数y=
k
x
的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上?若能,直接写出α的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(单位:m)是面条的粗细(横截面积)x(单位:mm2)的反比例函数,其图象如图所示.
(1)写出y与x的函数关系式;
(2)若当面条的粗细应不小于1.6mm2,面条的总长度最长是多少?
(3)若面条的长度为50m,那么面条的粗细程度为多少mm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,D是反比例函数y=
k
x
(k<0)
的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=-x+m与y=-
3
3
x+2
的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为______.

查看答案和解析>>

同步练习册答案