精英家教网 > 初中数学 > 题目详情
如图(1)△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

(1)问:始终与△AGC相似的三角形有              
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)
(3)问:当x为何值时,△AGH是等腰三角形.
(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,
∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,
∴∠H=∠CAG,
∵∠ACG=∠B=45°,
∴△AGC∽△HAB,
∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA;
故答案为:△HAB和△HGA.
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=(9≥x>0),
答:y关于x的函数关系式为y=(9≥x>0).

(3)当CG<BC时,∠GAC=∠H<∠HAG,
∴AC<CH,
∵AG<AC,
∴AG<CH<GH,
又∵AH>AG,AH>GH,
此时,△AGH不可能是等腰三角形,
当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形,
此时,GC=,即x=
当CG>BC时,由(1)△AGC∽△HGA,
所以,若△AGH必是等腰三角形,只可能存在AG=AH,
若AG=AH,则AC=CG,此时x=9,
当CG=BC时,注意:DF才旋转到与BC垂直的位置,此时B,E,G重合,∠AGH=∠GAH=45°,
所以△AGH为等腰三角形,所以CG=9
综上所述,当x=9或x=或9时,△AGH是等腰三角形.
(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.
(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.
(3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC时分别得出即可.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)如图,已知,求的值;
(2)如果,那么成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,E,F分别是CD,BC上的点,若∠AEF=90°,则一定有                          
A.△ADE∽△AEFB.△ADE∽△ECFC.△ECF∽△AEF D.△AEF∽△ABF

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=900,点P在BC边上,当
∠APD=900时,易证,从而得到,解答下列问题.
(1)模型探究1:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时, 结论仍成立吗? 试说明理由;
(2)拓展应用:如图3,M为AB的中点,AE与BD交于点C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=,AF=3,求FG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知,CE是Rt△ABC的斜边AB上的高,点P是CE的延长线上任意一点,BG⊥AP,
求证:(1)△AEP∽△DEB
(2) CE2=ED·EP

若点P在线段CE上或EC的延长线上时(如图2和图3),上述结论CE2=ED·EP还成立吗?若成立,请给出证明;若不成立,请说明理由.(图2和图3挑选一张给予说明即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平行四边形ABCD中,点E为AD的中点,连接BE,交AC于点F,则S△AEF:S△BCF的值是(     )
A.B.C.D.
                       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,DE∥BC,CD和BE相交于点O,=4:25,则AD:DB=_____________

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为3米,那么影长为30米的旗杆的高是 (    )
A.20米B.18米C.16米D.15米

查看答案和解析>>

同步练习册答案