分析 (1)将乘积式整理成$\frac{CE}{CD}$=$\frac{CD}{CA}$,根据两边对应成比例,夹角相等,两三角形相似求出△ECD和△DCA相似,再根据相似三角形对应角相等求出∠ADC=∠DEC,从而得到∠ABC=∠ADC,再利用等角的补角相等求出∠BAD=∠BCD,然后根据两组对角相等的四边形是平行四边形证明即可;
(2)根据平行四边形的定义求出四边形ABFE是平行四边形,根据平行四边形对边平行且相等可得AB∥EF,AB=EF,再求出CD∥EF,CD=EF,然后利用一组对边平行且相等的四边形是平行四边形求出四边形EFCD是平行四边形,根据两直线平行,内错角相等可得∠FEC=∠ECD,从而求出∠FEC=∠FCE,根据等边对等角可得EF=FC,再根据邻边相等的平行四边形是菱形求出平行四边形EFCD是菱形.
解答 (1)证明:∵CD2=CE•CA,
∴$\frac{CE}{CD}$=$\frac{CD}{CA}$,
∵∠ECD=∠DCA,
∴△ECD∽△DCA,
∴∠ADC=∠DEC,
∵∠DEC=∠ABC,
∴∠ABC=∠ADC,
∵AB∥CD,
∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,
∴∠BAD=∠BCD,
∴四边形ABCD是平行四边形;
(2)证明:∵EF∥AB,BF∥AE,
∴四边形ABFE是平行四边形,
∴AB∥EF,AB=EF,
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∴CD∥EF,CD=EF,
∴四边形EFCD是平行四边形,
∵CD∥EF,
∴∠FEC=∠ECD,
又∵∠DCE=∠FCE,
∴∠FEC=∠FCE,
∴EF=FC,
∴平行四边形EFCD是菱形.
点评 本题考查了相似三角形的判定与性质,平行四边形的判定与性质,菱形的判定,等边对等角的性质,(1)难点在于把乘积式转化为比例式并确定出相似三角形,(2)关键在于求出平行四边形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3:2 | B. | 5:3 | C. | 8:5 | D. | 13:8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com