已知x3+y3=27,x2y-xy2=6,求(y3-x3)+(x2y-3xy2)-2(y3-x2y)的值.
解:(y3-x3)+(x2y-3xy2)-2(y3-x2y)
=y3-x3+x2y-3xy2-2y3+2x2y
=-x3-y3+3x2y-3xy2.
因为x3+y3=27,所以-(x3+y3)=-27,即-x3-y3=-27,
因为x2y-xy2=6,所以3(x2y-xy2)=18,即3x2y-3xy2=18,
所以原式=-x3-y3+3x2y-3xy2=-27+18=-9.
∴(y3-x3)+(x2y-3xy2)-2(y3-x2y)的值为-9.
分析:本题考查整式的加法运算,由已知x3+y3=27,x2y-xy2=6,可以把(y3-x3)+(x2y-3xy2)-2(y3-x2y)转化成已知项的形式代入求值.
点评:先对(y3-x3)+(x2y-3xy2)-2(y3-x2y)去括号合并同类项,转化成含有x3+y3,x2y-xy2的形式.