分析 先利用等边三角形的性质得到∠C=∠ADE=∠B=60°,AB=BC=AC=12,再利用三角形外角性质证明∠BDF=∠CAD,则可判断△DBF∽△ACD,然后利用相似比计算BF的长.
解答 解:∵△ABC和△AED均为等边三角形,
∴∠C=∠ADE=∠B=60°,AB=BC=AC=12,
∵∠ADB=∠DAC+∠C,
而∠ADB=∠ADE+∠BDF,
∴∠BDF=∠CAD,
∴△DBF∽△ACD,
∴BF:CD=BD:AC,
即BF:4=8:12,解得BF=$\frac{8}{3}$.
故答案为$\frac{8}{3}$.
点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用相似三角形的性质时主要利用相似比计算线段的长.也考查了等边三角形的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com