精英家教网 > 初中数学 > 题目详情
8.小明、小华从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小华骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s (米)与小明出发时间t (分)之间的函数关系如图所示.下列说法:
①小华先到达青少年宫;
②小华的速度是小明速度的2.5倍;
③a=24;④b=480.
其中正确的是(  )
A.①②④B.①②③C.①③④D.①②③④

分析 根据小明步行720米,需要9分钟,进而得出小明的运动速度,利用图形得出小华的运动时间以及运动距离进而分别判断得出答案.

解答 解:由图象得出小明步行720米,需要9分钟,
所以小明的运动速度为:720÷9=80(m/分),
当第15分钟时,小华运动15-9=6(分钟),
运动距离为:15×80=1200(m),
∴小华的运动速度为:1200÷6=200(m/分),
∴200÷80=2.5,(故②正确);
当第19分钟以后两人之间距离越来越近,说明小华已经到达终点,则小华先到达青少年宫,(故①正确);
此时小华运动19-9=10(分钟),
运动总距离为:10×200=2000(m),
∴小明运动时间为:2000÷80=25(分钟),
故a的值为25,(故③错误);
∵小明19分钟运动距离为:19×80=1520(m),
∴b=2000-1520=480,(故④正确).
故正确的有:①②④.
故选A.

点评 此题主要考查了一次函数的应用,路程=速度×时间的关系等知识,解题的关键是读懂图象信息,利用数形结合的思想解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图中,PQ⊥数轴且PQ=1,以A为圆心,以AP长为半径画弧交数轴于B、C两点,求两点所表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算
(1)[2-5×(-$\frac{1}{2}}$)2]÷(-$\frac{1}{4}}$)
(2)(-24)×($\frac{1}{2}$-1$\frac{2}{3}$-$\frac{3}{8}}$)
(3)-14-(1-0.4)÷$\frac{1}{3}$×[(-2)2-6].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平行四边形ABCD中,E、F分别是AB、DC上的点,且AE=CF,求证:
(1)证明△ADE≌△CBF;
(2)当∠DEB=90°时,试说明四边形DEBF为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,⊙O的直径为6,在⊙O上位于直径AB的异侧有定点C和动点P.已知BC:CA=4:3,P在半圆上运动,CP⊥CD交PB的延长线于D点.当点P运动到什么位置时,△PCD的面积最大为(  )
A.36B.24C.18D.12

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在数轴上点A表示的有理数为-4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t(单位:秒).
(1)求t=2时点P表示的有理数;
(2)求点P是AB的中点时t的值;
(3)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)在点P由点B到点A的返回过程中,点P表示的有理数是多少(用含t的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知a+b=10,a2+b2=82.
①求ab的值;
②求a-b的值;
③求a2-b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为(  )
A.$\frac{1}{12}$B.$\frac{1}{32}$C.$\frac{1}{64}$D.$\frac{1}{128}$

查看答案和解析>>

同步练习册答案