精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿AC边向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动.
(1)若P,Q两点同时出发,几秒后可使△PQC的面积为8cm2
(2)若P,Q两点同时出发,几秒后PQ的长度为3数学公式cm.

解:P点的移动速度为1cm/s,Q点的移动速度为2cm/s,所以设CP=6-x,则CQ=2x,
(1)△PQC的面积为8cm2,即(6-x)(2x)=8,
解得x=2或4,
故2秒或4秒后△PQC的面积为8cm2

(2)PQ的长度为3cm.
即(2x)2+(6-x)2=45,
解得x=3或x=-(舍去 ),
故3秒后PQ的长度为3cm.
分析:P点的移动速度为1cm/s,Q点的移动速度为2cm/s,所以设CP=6-x,则CQ=2x,根据题目中的要求解x的值即可解题.
点评:本题考查了勾股定理在直角三角形中的运用,考查了三角形面积的计算,考查了一元二次方程的求解,本题中列出关于x的方程并求解是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案