精英家教网 > 初中数学 > 题目详情
如图,在三角形△ABC中,AC=BC,若将△ABC沿BC平移BC长的距离,得△CEF,连接AE.
(1)AE与CF有何特定位置关系?说明理由;
(2)若∠B=60°,BC=6cm,求四边形ABEF的面积.
分析:(1)猜想:AE与CF互相垂直平分.由于△CEF是△ABC沿BC平移得到的,那么可知AC∥EF,且AC=EF,根据AC=BC,可得四边形ACEF是菱形,即可判定AE、CF互相垂直;
(2)首先过点A作AH⊥BC于点H,由∠B=60°,AB=BC,可证得△ABC是等边三角形,即可求得AH的长,继而求得答案.
解答:解:(1)AE⊥CF.
理由:连接AF,
∵将△ABC沿BC平移BC长的距离,得△CEF,
∴BC=CE,AC=EF,AC∥EF,
∴四边形ACEF是平行四边形,
∵AC=BC,
∴AC=CE,
∴?ACEF是菱形,
∴AE⊥CF;

(2)过点A作AH⊥BC于点H,
∵∠B=60°,AB=BC,
∴△ABC是等边三角形,
∵BC=6cm,
∴AB=AC=6cm,
∴AH=AB•sin60°=3
3
(cm),
∵四边形ACEF是菱形,
∴AF=CE=AC=6cm,AF∥BE,
∴四边形ABEF是梯形,BE=BC+CE=12(cm),
∴S四边形ABEF=
1
2
(AF+BE)•AH=
1
2
×(6+12)×3
3
=27
3
(cm2).
点评:此题考查了菱形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在三角形ABC中,AB=AC,∠A=120°,D是BC上任意一点,分别做DE⊥AB于E,DF⊥AC于F,如果BC=20cm,那么DE+DF=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

43、如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,你能求出AC与AB的边长的差吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在平行四边形ABCD中,点E,F是对角线BD上两点,且BF=DE.写出图中一对全等的三角形并加以证明
精英家教网
(2)如图.在三角形ABC中,∠A=45°,tanB=
1
3
,BC=
10
,求AB的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在三角形ABC中,若AB=AC,BD=BC,若∠ABD=30°,则∠A的大小是
40°
40°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在三角形ABC中,AD⊥BC,EF⊥BC,垂足分别为D、F.G为AC上一点,E为AB上一点,∠1+∠FEA=180°.
求证:∠CDG=∠B.

查看答案和解析>>

同步练习册答案