【题目】如图,若点M是y轴正半轴上的任意一点,过点M作PQ∥x轴,分别交函数y=(y>0)和y=(y>0)的图象于点P和Q,连接OP和OQ,则下列结论正确是( )
A.∠POQ不可能等于90°
B.
C.这两个函数的图象一定关于y轴对称
D.△POQ的面积是
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:
x | … | ﹣2 | ﹣1 | 0 | 2 | … |
y | … | ﹣3 | ﹣4 | ﹣3 | 5 | … |
(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;
(2)求出该函数图象与x轴的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是( )
A.①②B.①③C.①②③D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:
(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m的值为 ;
(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;
(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移4个单位.
(1)请直接写出经过两次平移后的函数解析式;
(2)请求出经过两次平移后的图象与x轴的交点坐标,并指出当x满足什么条件时,函数值小于0?
(3)若A(x1,y1),B(x2,y2)是经过两次平移后所得的函数图象上的两点,且x1<x2<0,请比较y1、y2的大小关系.(直接写结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小黄出发0.5小时时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)小黄出发1.5小时时,离目的地还有多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示,在平面直角坐标系中,二次函数()交轴于,,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)点是第二象限内的点抛物线上一动点
①求面积最大值并写出此时点的坐标;
②若,求此时点坐标;
(3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转至,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限内的点C分别在双曲线和的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:
①阴影部分的面积为;
②若B点坐标为(0,6),A点坐标为(2,2),则;
③当∠AOC=时,;
④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是 ____________(填写正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD相交于点Q,已知AD=4,BC=9,以下结论:
①⊙O的半径为 ,②OD∥BE ,③PB=, ④tan∠CEP=
其中正确结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com