【题目】一个直角三角形斜边长为,内切圆半径为,则这个三角形周长是( )
A. B. C. D.
【答案】B
【解析】
设圆O的半径是r,连接OD,OE,推出正方形DCEO,得出OD=OE=CD=CE,根据切线长定理求出AF=AD,BE=BF,CE=CD,根据AC-r+BC-r=AB求出AC+BC即可.
设圆O的半径是r,连接OD,OE.
∵圆O与边AC、BC、AB分别切于点D. E.F,
∴OD⊥AC,OE⊥BC,AF=AD,BE=BF,CE=CD,
∵
∴四边形ODCE是正方形,
∴OD=OE=CD=CE,
∴AF=AD=ACr,BF=BE=BCr,
∵AB=AF+BF=(ACr)+(BCr),
∴ACr+BCr=AB=10cm,
∴AC+BC=12cm,
∴△ABC的周长是:AC+BC+AB=22cm.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.
(1)请画出树状图并写出(m,n)所有可能的结果;
(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形.
(1)如图(1),点E在线段AB上,点D在射线CB上,且ED=EC.将△BCE绕点C顺时针旋转60°至△ACF,连接EF.猜想线段AB,DB,AF之间的数量关系;
(2)点E在线段BA的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF之间的数量关系;
(3)请选择(1)或(2)中的一个猜想进行证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 一组对边相等,另一组对边平行的四边形一定是平行四边形
B. 对角线相等的四边形一定是矩形
C. 两条对角线互相垂直的四边形一定是菱形
D. 两条对角线相等且互相垂直平分的四边形一定是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.
(1)求证:四边形OCED是矩形;
(2)若CE=1,DE=2,ABCD的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出如下定义:对于⊙O 的弦 MN 和⊙O 外一点 P(M,O,N 三点不共线,且点 P,O 在直线 MN 的异侧),当∠MPN+∠MON=180°时,则称点 P 是线段 MN 关于点 O 的关联点.图 1 是点 P 为线段 MN 关于点 O 的关联点的示意图.
在平面直角坐标系 xOy 中,⊙O 的半径为 1.
(1)如图 2,已知 M(,),N( ,﹣),在 A(1,0),B(1,1),C(,0)三点中,是线段 MN 关于点 O 的关联点的是哪个点;
(2)如图 3,M(0,1),N(,﹣),点 D 是线段 MN 关于点 O 的关联点.
①求∠MDN 的大小;
②在第一象限内有一点 E(m,m),点 E 是线段 MN 关于点 O 的关联点,判断△MNE 的形状,并直接写出点 E 的坐标;
③点 F 在直线 y=﹣x+2 上,当∠MFN≥∠MDN 时,求点 F 的横坐标 x 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);
(2)连接BD,求证:BD平分∠CBA.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com