精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD中,E、F分别在边BC、CD上,∠EAF=45°,BE=2,CF=3.求:正方形的边长.如图,正方形ABCD中,E、F分别在边BC、CD上,∠EAF=45°,BE=2,CF=3.求:正方形的边长.
延长CB至G,使BG=DF,连接AG、EF,
设正方形的边长为a,则DF=a-3,CE=a-2,
∵AB=AD,BG=DF,∠GBA=∠FDA=90°,
∴△ABG≌△ADF,(SAS)
∴∠GAB=∠FAD,AG=AF,
∵∠EAF=45°,∠BAD=90°,
∴∠GAE=45°,
∵AF=AG,∠EAF=∠EAG=45°,AE=AE,
∴△AEF≌△AEG,
∴EF=EG,
在Rt△CEF中,EF=
CF2+CE2
=
32+(a-2)2

在△AEG中,EG=EB+BG=a-3+2=a-1,
32+(a-2)2
=a-1,
∴a=6,
∴正方形的边长为6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,则BE的长为(  )
A.10B.11C.12D.15

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是正方形ABCD内一点,将△APB绕点B顺时针旋转能与△CP′B重合,若PP′=2,则BP′=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

四边形ABCD的对角线AC、BD相交于点O,ADBC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个______(填代号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)求证:EF+
1
2
AC=AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1
1
2
A1C1与AB三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E在正方形ABCD的边CD上运动,AC与BE交于点F.
(1)如图1,当点E运动到DC的中点时,求△ABF与四边形ADEF的面积之比;
(2)如图2,当点E运动到CE:ED=2:1时,求△ABF与四边形ADEF的面积之比;
(3)当点E运动到CE:ED=3:1时,写出△ABF与四边形ADEF的面积之比;当点E运动到CE:ED=n:1(n是正整数)时,猜想△ABF与四边形ADEF的面积之比(只写结果,不要求写出计算过程);
(4)请你利用上述图形,提出一个类似的问题

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,F为正方形ABCD的对角线AC上一点,FE⊥AD于点E,M为CF的中点.
(1)求证:MB=MD;
(2)求证:ME=MB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.
探究:设A、P两点间的距离为x.
(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在△ABC中,∠ACB=90°,AC=BC,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O处,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度反(0°<a<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图1所示).那么,在上述旋转过程中:
(1)如图1,线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?请说明你发现的结论的理由.
(2)如图2,连接HK,
①若AK=12,BH=5,求△OKH的面积;
②若AC=BC=4,设BH=x,当△CKH的面积为2时,求x的值,并说出此时四边形CHOK是什么特殊四边形.

查看答案和解析>>

同步练习册答案