分析 (1)连接OD,BD,根据圆周角定理得到∠ABO=90°,根据等腰三角形的性质得到∠ABD=∠ADB,∠DBO=∠BDO,根据等式的性质得到∠ADO=∠ABO=90°,根据切线的判定定理即可得到即可;
(2)由AD是半圆O的切线得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根据圆周角定理得到∠ODC+∠BDO=90°,等量代换得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到结论;
(3)根据已知条件得到∠DOC=2∠CDE=54°,根据平角的定义得到∠BOD=180°-54°=126°,然后由弧长的公式即可计算出结果.
解答 (1)证明:连接OD,BD,
∵AB是以BC为直径的半圆O的切线,
∴AB⊥BC,即∠ABO=90°,
∵AB=AD,
∴∠ABD=∠ADB,
∵OB=OD,
∴∠DBO=∠BDO,
∴∠ABD+∠DBO=∠ADB+∠BDO,
∴∠ADO=∠ABO=90°,
∴AD是半圆O的切线;
(2)证明:由(1)知,∠ADO=∠ABO=90°,
∴∠A=360°-∠ADO-∠ABO-∠BOD=180°-∠BOD,
∵AD是半圆O的切线,
∴∠ODE=90°,
∴∠ODC+∠CDE=90°,
∵BC是⊙O的直径,
∴∠ODC+∠BDO=90°,
∴∠BDO=∠CDE,
∵∠BDO=∠OBD,
∴∠DOC=2∠BDO,
∴∠DOC=2∠CDE,
∴∠A=2∠CDE;
(3)解:∵∠CDE=27°,
∴∠DOC=2∠CDE=54°,
∴∠BOD=180°-54°=126°,
∵OB=2,
∴$\widehat{BD}$的长=$\frac{126•π×2}{180}$=$\frac{7}{5}$π.
点评 本题考查了切线是性质,弧长的计算,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{7}{12}$ | B. | $\frac{7}{24}$ | C. | $\frac{24}{25}$ | D. | $\frac{16}{25}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 24$\sqrt{2}$海里 | B. | 12$\sqrt{2}$海里 | C. | 24$\sqrt{3}$海里 | D. | 12$\sqrt{3}$海里 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | $\frac{3}{2}$ | D. | 不能确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com