精英家教网 > 初中数学 > 题目详情
唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
作法如下:如(1)图,从B出发向河岸引垂线,垂足为D,在AP的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如(2)图,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为______.

(2)实践运用
如(3)图,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.

(3)拓展迁移
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)
(1)∵在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,
∴∠DAC=∠DCA=30°,
∴∠ACB=30°,
∴∠BAC=90°,
∴tan∠ACB=
AB
AC

∴AC=
2
3
3
=2
3

故答案为:2
3


(2)如图,作点A关于MN的对称点A′,则A′在⊙O上,
连接BA′交MN于P′点,此时BP′+AP′最小.
由对称性可知AP′=A′P′,
∴BP′+AP′=BP′+A′P′=A′B,
连接OA、OB、OA′,
可知弧AN=弧A′N,
则∠NOA′=∠NOA=2∠M=60°,
而点B为弧AN中点,
∴∠BON=30°
∴∠BOA′=90°
而MN=1,
∴在Rt△OA′B中,A′B=
2
2

即BP+AP的最小值
2
2


(3)①∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、
C(0,-3)两点,分别代入二次函数解析式得:
-
b
2a
=1
a-b+c=0
c=-3

解得:a=1,b=-2,c=-3,
∴二次函数解析式为:y=x2-2x-3,
②得到直线BC:y=x-3,
∴M(1,-2),AC的长为:
10

∴△ACM周长最小值即是:AM+CM最小时的值,
∵AM+CM=BC=3
2

∴△ACM周长最小值为:
10
+3
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.
(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知顶点为P的抛物线y=
1
2
x2+bx+c
经过点A(-3,6),并x轴交于B(-1,0),C两点.
(1)求此抛物线的解析式;
(2)求四边形ABPC的面S;
(3)试判断四边形ABPC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)、B(3,0),与y轴的正半轴交于点C,顶点为E.
(1)求抛物线解析式及顶点E的坐标;
(2)如图,过点E作BC平行线,交x轴于点F,在不添加线和字母情况下,图中面积相等的三角形有:______;
(3)将抛物线向下平移,与x轴交于点M、N,与y轴的正半轴交于点P,顶点为Q.在四边形MNQP中满足S△NPQ=S△MNP,求此时直线PN的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为4,P是边BC上一点,QP⊥AP交DC于Q,问当点P在何位置时,△ADQ的面积最小并求出这个最小面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,记抛物线y=-x2+1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…Pn-1,过每个分点作x轴的垂线,分别与抛物线交于点Q1,Q2,…,Qn-1,再记直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面积分别为S1,S2,…,这样就有S1=
n2-1
2n3
,S2=
n2-4
2n3
,…;记W=S1+S2+…+Sn-1,当n越来越大时,你猜想W最接近的常数是(  )
A.
2
3
B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

同步练习册答案