【题目】在平面直角坐标系中,抛物线的顶点在直线上.
(1)求直线的函数表达式;
(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为点,与直线的另一个交点为点,与轴的右交点为点(点不与点重合),连接,.
①如图,在平移过程中,当点在第四象限且的面积为60时,求平移的距离的长;
②在平移过程中,当是以线段为一条直角边的直角三角形时,求出所有满足条件的点的坐标.
【答案】(1);(2)①,②或.
【解析】
(1)利用配方法将抛物线表达式变形为顶点式,由此可得出点A的坐标,根据点A的坐标,利用待定系数法即可求出直线的函数表达式;
(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x﹣m)2﹣2m﹣2,利用一次函数图象上点的坐标特征结合点C在x轴上且点C不与点A′重合,可得出m>﹣1.
①联立直线和抛物线的表达式成方程组,通过解方程组可求出点B′的坐标,利用二次函数图象上点的坐标特征可求出点C的坐标,过点C作CD∥y轴,交直线A′B′于点D,由点C的坐标可得出点D的坐标,利用S△A′B′C=S△B′CD﹣S△A′CD=60,即可得出关于t的方程,利用换元法解方程组即可得出m的值,进而可得出点A′的坐标,再由点A的坐标利用两点间的距离公式即可求出结论;
②根据点A′、B′、C的坐标,可得出A′B′、A′C、B′C的长度,分∠A′B′C=90°及∠B′A′C=90°两种情况,利用勾股定理可得出关于m的方程,利用换元法解方程即可求出m的值,进而可得出点A′的坐标,此题得解.
(1)∵y=﹣6x+4=(x﹣6)2﹣14,
∴点A的坐标为(6,﹣14).
∵点A在直线y=kx﹣2上,
∴﹣14=6k﹣2,解得:k=﹣2,
∴直线的函数表达式为y=﹣2x﹣2.
(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x﹣m)2﹣2m﹣2.
当y=0时,有﹣2x﹣2=0,
解得:x=﹣1,
∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),
∴m>﹣1.
①联立直线与抛物线的表达式成方程组,
解得: , ,
∴点B′的坐标为(m﹣4,﹣2m+6).
当y=0时,有(x﹣m)2﹣2m﹣2=0,
解得:x1=m﹣2,x2=m+2,
∴点C的坐标为(m+2,0).
过点C作CD∥y轴,交直线A′B′于点D,如图所示.
当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,
∴点D的坐标为(m+2,﹣2m﹣4﹣2),
∴CD=2m+2+4.
∴S△A′B′C=S△B′CD﹣S△A′CD=CD[m+2﹣(m﹣4)]﹣CD(m+2﹣m)=2CD=2(2m+2+4)=60.
设t=,则有t2+2t﹣15=0,
解得:t1=﹣5(舍去),t2=3,
∴m=8,
∴点A′的坐标为(8,﹣18),
∴AA′=.
②∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),
∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.
当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,
整理得:32m﹣128﹣16=0.
设a=,则有2a2﹣a﹣10=0,
解得:a1=﹣2(舍去),a2=,
∴m=,
∴点A′的坐标为;
当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,
整理得:32m+32﹣16=0.
设a=,则有2a2﹣a=0,
解得:a3=0(舍去),a4=,
∴m=﹣,
∴点A′的坐标为.
综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.
(1)填空:点B的坐标为________,点C的坐标为_________.
(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:
①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论有
A.5个 B.4个 C.3个 D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为+1,对角线AC、BD相交于点O,AE平分∠BAC分别交BC、BD于E、F,
(1)求证:△ABF∽△ACE;
(2)求tan∠BAE的值;
(3)在线段AC上找一点P,使得PE+PF最小,求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4.
(1)求点A的坐标和k的值;
(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com