精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC=2 ,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为

【答案】3 ﹣3
【解析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.

∵AB=AC=2 ,∠BAC=120°,

∴BN=CN,∠B=∠ACB=30°.

在Rt△BAN中,∠B=30°,AB=2

∴AN= AB= ,BN= =3,

∴BC=6.

∵∠BAC=120°,∠DAE=60°,

∴∠BAD+∠CAE=60°,

∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.

在△ADE和△AFE中,

∴△ADE≌△AFE(SAS),

∴DE=FE.

∵BD=2CE,BD=CF,∠ACF=∠B=30°,

∴设CE=2x,则CM=x,EM= x,FM=4x﹣x=3x,EF=ED=6﹣6x.

在Rt△EFM中,FE=6﹣6x,FM=3x,EM= x,

∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+( x)2

解得:x1= ,x2= (不合题意,舍去),

∴DE=6﹣6x=3 ﹣3.

所以答案是:3 ﹣3.

(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.

∵AB=AC=2 ,∠BAC=120°,

∴∠ACB=∠B=∠ACF=30°,

∴∠ECG=60°.

∵CF=BD=2CE,

∴CG=CE,

∴△CEG为等边三角形,

∴EG=CG=FG,

∴∠EFG=∠FEG= ∠CGE=30°,

∴△CEF为直角三角形.

∵∠BAC=120°,∠DAE=60°,

∴∠BAD+∠CAE=60°,

∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.

在△ADE和△AFE中,

∴△ADE≌△AFE(SAS),

∴DE=FE.

设EC=x,则BD=CD=2x,DE=FE=6﹣3x,

在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,

EF= = x,

∴6﹣3x= x,

x=3﹣

∴DE= x=3 ﹣3.

所以答案是:3 ﹣3.

【考点精析】通过灵活运用勾股定理的概念和旋转的性质,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“绿水青山就是金山银山”,高新区凌水河治理工程正式启动,若由甲工程队单独完成需10个月;若由甲、乙两工程队合做4个月后,剩下工程由乙工程队再做5个月可以完成。(1)乙工程队单独完成这项工程需几个月的时间?

(2)已知甲工程队每月施工费用为15万元,比乙工程队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲、乙工程队同时开工,甲工程队做个月,乙工程队做个月(均为整数)分工合作的方式施工,问有哪几种施工方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,各内角的平分线分别相交于点E,F,G,H.

(1)求证:△ABG≌△CDE;
(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.

(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)设四边形DECO的面积为s,求s关于t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校百变魔方社团准备购买两种魔方.已知购买2个种魔方和6个种魔方共需130元,购买3个种魔方和4个种魔方所需款数相同.

(1)求这两种魔方的单价;

(2)结合社员们的需求,社团决定购买两种魔方共100个(其中种魔方不超过50个).某商店有两种优惠活动,如图所示.

请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们知道:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°

1)请写出它的逆命题   ;该逆命题是一个   命题(填

2)若你的判断是真命题请写出证明过程(要求画图,并写出已知,求证).若是假命题,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AM//BN,∠A=600.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.

(1)①∠ABN的度数是 ;②∵AM //BN,∴∠ACB=∠

(2)求∠CBD的度数;

(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.

(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2 ,点D为AC与反比例函数y= 的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为

查看答案和解析>>

同步练习册答案