精英家教网 > 初中数学 > 题目详情

【题目】数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).
(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;

(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;

(3)深入探究
如图3,若AD=3AB,探究得: 的值为常数t,则t=

【答案】
(1)证明:①∵四边形ABCD是平行四边形,∠BAD=120°,

∴∠D=∠B=60°,

∵AD=AB,

∴△ABC,△ACD都是等边三角形,

∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,

∵∠ECF=60°,

∴∠BCE+∠ACE=∠ACF+∠ACE=60°,

∴∠BCE=∠ACF,

在△BCE和△ACF中,

∴△BCE≌△ACF.

②∵△BCE≌△ACF,

∴BE=AF,

∴AE+AF=AE+BE=AB=AC.


(2)证明:设DH=x,由题意,CD=2x,CH= x,

∴AD=2AB=4x,

∴AH=AD﹣DH=3x,

∵CH⊥AD,

∴AC= =2 x,

∴AC2+CD2=AD2

∴∠ACD=90°,

∴∠BAC=∠ACD=90°,

∴∠CAD=30°,

∴∠ACH=60°,

∵∠ECF=60°,

∴∠HCF=∠ACE,

∴△ACE∽△HCF,

= =2,

∴AE=2FH.


(3)
【解析】解; (3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.

∵∠ECF+∠EAF=180°,

∴∠AEC+∠AFC=180°,

∵∠AFC+∠CFN=180°,

∴∠CFN=∠AEC,∵∠M=∠CNF=90°,

∴△CFN∽△CEM,

=

∵ABCM=ADCN,AD=3AB,

∴CM=3CN,

= = ,设CN=a,FN=b,则CM=3a,EM=3b,

∵∠MAH=60°,∠M=90°,

∴∠AHM=∠CHN=30°,

∴HC=2a,HM=a,HN= a,

∴AM= a,AH= a,

∴AC= = a,

AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM= a,

= =

故答案为

(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由题意,CD=2x,CH= x,由△ACE∽△HCF,得 = 由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得 = ,由ABCM=ADCN,AD=3AB,推出CM=3CN,所以 = = ,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ABAC,∠A=108°.

1)实践与操作:作AB的垂直平分线DE,与ABBC分别交于点DE(用尺规作图.保留作图痕迹,不要求写作法)

2)推理与计算:求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(﹣10),(30),现同时将点AB分别向上平移2个单位,再向右平移1个单位,分别得到对应点CD,连接ACBD

1)求出点CD的坐标;

2)设y轴上一点P0m),m为整数,使关于xy的二元一次方程组有正整数解,求点P的坐标;

3)在(2)的条件下,若Q点在线段CD上,横坐标为nPBQ的面积SPBQ的值不小于0.6且不大于4,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:

(1)m= , n=
(2)在扇形统计图中,D组所占圆心角的度数为度;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何证明:

1)已知:如图1BDCE分别是△ABC的外角平分线,过点AAFBDAGCE,垂足分别是FG,连接FG,延长AFAG,与直线BC相交.求证:FGAB+BC+AC).

2)若BDCE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求证:AF平分∠BAC.

【答案】证明见解析.

【解析】试题分析:先根据AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC再易证ABF≌△ACF,从而证出AF平分∠BAC

试题解析:证明:∵AB=AC(已知)

∴∠ABC=ACB(等边对等角).

BDCE分别是高,

BDAC,CEAB(高的定义).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代换).

FB=FC(等角对等边)

ABFACF中,

ABFACF(SSS)

∴∠BAF=CAF(全等三角形对应角相等)

AF平分∠BAC.

型】解答
束】
23

【题目】如图,在△ABC中,AC=BC∠C=90°AD△ABC的角平分线,DE⊥AB,垂足为E

1)求证:CD=BE

2)已知CD=2,求AC的长;

3)求证:AB=AC+CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线L:y=﹣ (x+t)(x﹣t+4)与x轴只有一个交点,则抛物线L与x轴的交点坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法:①方程x2-3x+2=0是“倍根方程”;②若(x-2)(mx+n)=0是“倍根方程”,则4m2+5mn+n2=0;③若pq=2,则关于x的方程px2+3x+q=0是“倍根方程”;④若方程ax2+bx+c=0是“倍根方程”,且5a+b=0,则方程ax2+bx+c=0的一个根为.其中正确的是____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB<BC.

(1)利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则DE=

查看答案和解析>>

同步练习册答案