精英家教网 > 初中数学 > 题目详情

如图,直线a∥b,那么∠x的度数是________.

72°
分析:过A作AE∥a,过B作BF∥a,过C作CR∥a,推出直线a∥b∥AE∥BF∥CR,根据平行线的性质推出∠RCT=∠CTZ=30°,求出∠RCB=∠CBF=18°,求出∠ABF=12°=∠EAB,进一步求出∠YWA=180°-∠QWY=60°=∠WAE,根据x=∠WAE+∠EAB即可求出答案.
解答:解:过A作AE∥a,过B作BF∥a,过C作CR∥a,
∵直线a∥b,
∴直线a∥b∥AE∥BF∥CR,
∴∠RCT=∠CTZ=30°,
∵∠BCT=48°,
∴∠BCR=48°-30°=18°,
∴∠RCB=∠CBF=18°,
∴∠ABF=30°-18°=12°=∠EAB,
∵∠QWY=120°,
∴∠YWA=180°-∠QWY=60°,
∴∠WAE=∠YWA=60°,
∴x=∠WAE+∠EAB=60°+12°=72°,
故答案为:72°.
点评:本题主要考查对平行线的性质平行公理及推论,邻补角的定义等知识点的理解和掌握,正确作辅助线并灵活运用性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图.直线AB分别交y轴,x轴于A,B两点,已知A(0,2
3
),B(2,0),以P(-
1
2
,0)为圆心的圆与直线AB相切于点E.
(1)求⊙P的半径长.
(2)若Rt△ABO被直线y=kx-2k分成两部分,设靠近原点那一部分面积为S,求出S与自变量k的函数关系式.
(3)若直线y=kx-2k把Rt△ABO分成两部分的面积比为1:2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,HL∥FG,EF⊥CD,∠1=40°,那∠EHL的度数为
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

平面是这样,那曲面呢?我们再看一题(如图1),从A到B,怎样走最近呢?与前两题相同,把圆柱体展开(如图2),此时,只有A点位于与长方形的交界处时,才是最短路径,且只有一条最短路径AB.

从上面几题可以看出立体图形中的最短路径问题,都可先把立题图形转化成平面图形再思考.而且得出正方体有6条最短路径;长方体有2条最短路径;圆柱有1条最短路径.这短短的八个字还真是奥妙无穷啊!
探究问题一:已知,A,B在直线L的两侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题二:已知,A,B在直线L的同一侧,在L上求一点,使得PA+PB最小.(如图所示)

探究问题三:A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)

探究问题四:AB是锐角MON内部一条线段,在角MON的两边OM,ON上各取一点C,D组成四边形,使四边形周长最小.(如图所示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线l1过A(0,2),B(2,0)两点,直线l2:y=mx+b过点(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,设此三角形的面积为S,求S关于m的函数解析式,及自变量m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图.直线AB分别交y轴,x轴于A,B两点,已知A(0,2数学公式),B(2,0),以P(-数学公式,0)为圆心的圆与直线AB相切于点E.
(1)求⊙P的半径长.
(2)若Rt△ABO被直线y=kx-2k分成两部分,设靠近原点那一部分面积为S,求出S与自变量k的函数关系式.
(3)若直线y=kx-2k把Rt△ABO分成两部分的面积比为1:2,求k的值.

查看答案和解析>>

同步练习册答案