【题目】如图,在足够大的空地上有一段长为30米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了80米木栏,设这个菜园垂直于墙的一边长为x米.
(1)若平行于墙的一边长为y米,写出y与x的函数表达式子,并求出自变量x的取值范围;
(2)垂直于墙的一边长为多少米时,这个矩形菜园ABCD的面积最大,最大值是多少?
【答案】(1)y=80﹣2x(25≤x<40);(2)垂直于墙的一边长为25米时,矩形菜园ABCD的面积最大,最大值是750平方米.
【解析】
(1)按题意设出AB,表示BC即可写出函数解析式;
(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,即可求解.
解:(1)设垂直于墙的一边长为x米,则y=80﹣2x,
∵
∴25≤x<40,
∴y=80﹣2x(25≤x<40);
(2)垂直于墙的一边长为x米,矩形ABCD的面积为S平方米,依题意
得:S=x(80-2x)=﹣2(x﹣20)2+800,
∵-2<0,
∴当x≥25时,y随x的增大而减小,
当x=25时,S最大=﹣2×(25﹣20)2+800=750.
∴当垂直于墙的一边长为25米时,矩形菜园ABCD的面积最大,最大值是750平方米.
科目:初中数学 来源: 题型:
【题目】为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点,取EF中点G,连接DG并延长交AB于点M,延长EF交AC于点N。
(1)求证:∠FAB和∠B互余;
(2)若N为AC的中点,DE=2BE,MB=3,求AM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知三个顶点的坐标分别.
(1)画出;
(2)以B为位似中心,将放大到原来的2倍,在右图的网格图中画出放大后的图形△;
(3)写出点A的对应点的坐标:___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(1,0)、点B(5,0),点P是该直角坐标系内的一个动点.若点P在y轴的负半轴上,且∠APB=30°,则满足条件的点P的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.
(1)若抛物线C与直线l有交点,求a的取值范围;
(2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;
(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com