精英家教网 > 初中数学 > 题目详情
如图,已知CA、CB都经过点C,AC是⊙B的切线,⊙B交AB于点D,连接CD并延长交OA于点E,连接AF.
(1)求证:AE⊥AB;
(2)求证:DE•DC=2AD•DB;
(3)如果AE=3,BD=4,求DC的长.
(1)证明:∵AC是⊙B的切线,
∴∠ACB=∠ACD+∠BCD=90°.
∵BC=BD,
∴∠BCD=∠BDC.
∴∠ACD+∠BDC=90°.
∵AC=AE,
∴∠ACD=∠AED.
∵∠ADE=∠BCD,
∴∠AED+∠ADE=90°.
∴∠EAD=90°.
即AE⊥AB.

(2)证明:过点B作BF⊥CD于点F,
∵∠ADE=∠BDF,∠EAD=∠BFD,
∴△ADE△FDB.
DE
DB
=
AD
FD

即DE•FD=AD•DB.
∵DC=2FD,
∴DE•DC=2AD•DB.

(3)∵AE=3,BD=4,
在Rt△ABC中,
(AD+BD)2=AC2+BC2
即(AD+4)2=32+42解得AD=1,
∴DE=
AE2+AD2
=
32+12
=
10

∵DE•DC=2AD•DB,
10
×DC=2×1×4,
∴DC=
4
10
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上运动(与A、B两点不重合),如果∠P=46°,那么∠ACB的度数是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,EB、EC是⊙O的两条切线,B、C为切点,A是⊙O上的任意一点,若∠A=70°,则∠E=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且AB=4
3
,求
ECF
的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于(  )
A.20°B.30°C.40°D.50°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

为了测量一个圆形铁环的半径,小华采用了如下方法:将铁环平放在水平桌面上,用一个锐角为30°的直角三角板和一个刻度尺,按如图所示的方法得到有关数据,进而求得铁环的半径,若测得AB=10cm,则铁环的半径是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.若∠CAE=130°,则∠DAE=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两圆的半径分别为7cm和8cm,圆心距为1cm,则两圆的位置关系是(  )
A.相离B.相交C.内切D.外切

查看答案和解析>>

同步练习册答案