精英家教网 > 初中数学 > 题目详情
如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.
分析:连接BE,记BE中点为F,连接FN、FM,首先根据三角形中位线定理证明FN=FM,再证明∠2=∠5,即可根据同位角相等两直线平行证出结论.
解答:证明:连接BE,记BE中点为F,连接FN、FM,
∵FN为△EAB的中位线,
∴FN=
1
2
AB,FN∥AB,
∵FM为△BCE的中位线,
∴FM=
1
2
CE,FM∥CE,
∵CE=AB,
∴FN=FM,
∴∠3=∠4,
∵∠4=∠5,
∴∠3=∠5,
∵∠1+∠2=∠3+∠5,
∠1=∠2,
∴∠2=∠5,
∴NM∥AD.
点评:此题主要考查了平行线的判定与性质,三角形的中位线定理,解决问题的关键是正确画出辅助线,证明∠2=∠5.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为等腰三角形ABC底边上的高,且tan∠B=
4
3
.AC上有一点E,满足AE:EC=2:3.那么,tan∠ADE是(  )
A、
3
5
B、
2
3
C、
1
2
D、
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果
AE
EC
=
2
3
,那么
AB
AC
=(  )
A、
1
3
B、
2
3
C、
2
5
D、
3
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为∠BAC的平分线,且AD=2,AC=
3
,∠C=90°,求BC的长及△ABC外接圆直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,已知AD为⊙O的切线,⊙O的直径是AB=2,弦AC=1,则∠CAD=
30
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AD为△ABC的角平分线,DE∥AB,如果
AE
EC
=
2
3
,那么
DE
AB
=
 

查看答案和解析>>

同步练习册答案