精英家教网 > 初中数学 > 题目详情

【题目】如图,在三角形中,,垂足为点,直线过点,且,点为线段上一点,连接,∠BCG与∠BCE的角平分线CMCN分别交于点MN,若,则=_________°.

【答案】

【解析】

依据 90°-B=BAD,已知90°-FCB=BAD,可得∠FCB=B,进而判定EFAB,即可得到∠ECG=BGC=70°,再根据∠MCN=BCN-BCM=(∠BCE-BCG=ECG,即可得到结论.

解:∵ADBC
RtABD中,90°-B=BAD
又∵90°-FCB=BAD
∴∠FCB=B
EFAB
∴∠ECG=BGC=70°
∵∠BCG与∠BCE的角平分线CMCN分别交AD于点MN
∴∠BCN=BCE,∠BCM=BCG
∴∠MCN=BCN-BCM=(∠BCE-BCG=ECG

∵∠ECG=BGC=70°

∴∠MCN=×70°=35°
故答案为:35

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AEBDCFBDEF分别为垂足.

1)求证:四边形AECF是平行四边形;

2)如果AE=3EF=4,求AFEC所在直线的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程:

(2)计算:3a(2a2-9a+3)-4a(2a-1)

(3)计算:()×()+|-1|+(5-2π)0

(4)先化简,再求值:(xy2+x2y),其中x=,y=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形(其面积= ).

(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的式子表示S1和S2

(2)请写出上述过程所揭示的乘法公式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBC于点BDCBC于点CDE平分∠ADCBC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF

(1)求证:∠DAF=∠F

(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,点的坐标为,点的坐标为,将线段向右平移个单位长度得到线段(点和点分别是点和点的对应点),连接,点是线段的中点.

备用图

1)求点的坐标;

2)若长方形以每秒个单位长度的速度向正下方运动,(点分别是点的对应点),当轴重合时停止运动,连接,设运动时间为妙,请用含的式子表示三角形的面积(不要求写出的取值范围);

3)在(2)的条件下,连接,问是否存在某一时刻,使三角形的面积等于三角形的面积?若存在,请求出值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度.
图1为点P在⊙O外的情形示意图.

(1)若点B(1,0),C(1,1),D(0, ),则SB=;SC=;SD=
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR , 直接写出满足条件的线段PQ长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y= 的图象交于点A(﹣1,n).

(1)求反比例函数y= 的解析式;
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:已知a+b=﹣4,ab=3,求a2+b2的值.

解:∵a+b=﹣4,ab=3,

a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.

请你根据上述解题思路解答下面问题:

(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.

(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.

查看答案和解析>>

同步练习册答案