【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E,H分别在AB,AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.
【答案】(1)详见解析;(2)正方形EFGH的边长为cm,面积为
cm2.
【解析】试题分析:(1)由正方形可得EH∥BC,所以可以得到对应的两组角相等,即可证明相似;(2)设正方形边长为x,再由△AEH∽△ABC得到对应边成比例,列出关于x的方程,解出x即可.
试题解析:
(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC;
(2)解:∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM.设正方形EFGH的边长为xcm,∵△AEH∽△ABC,∴ ,∴
,解得x=
.
∴正方形EFGH的边长为cm,面积为
cm2.
点睛:两个三角形的相似比等于对应的高之比,角平分线之比,中线之比.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,菱形ABCD的边AB在x轴上,已知点A(2,0),点C(10,4),双曲线经过点D.
(1)求菱形ABCD的边长;
(2)求双曲线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场以80元/个的价格购进1000个保温杯.经市场调研,保温杯定价为100元/个时可全部售完,定价每提高1元,销售量将减少5个.未卖完的保温杯可以直接退还厂家.要使商场利润达到60500元,保温杯的定价应为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点 P(﹣2,﹣3)向右平移 2 个单位,再向上平移 4 个单位,则所得到的点的坐标为( )
A. (﹣2,0) B. (0,﹣2) C. (1,0) D. (0,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,sinA=,BC=8,点D是AB的中点,过点B作CD的垂线,垂足为点E.
(1)求线段CD的长;
(2)求cos∠ABE的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在13×13的网格图中,已知△ABC和点M(1,2).
(1)以点M为位似中心,画出△ABC的位似图形△A′B′C′,其中△A′B′C′与△ABC的位似比为2;
(2)写出△A′B′C′的各顶点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com