精英家教网 > 初中数学 > 题目详情
16.如图1,已知双曲线y=$\frac{k}{x}$(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:

(1)若点A的坐标为(3,1),则点B的坐标为(-3,-1);当x满足:-3<x<0或x>3时,$\frac{k}{x}$≤k′x;
(2)过原点O作另一条直线l,交双曲线y=$\frac{k}{x}$(k>0)于P,Q两点,点P在第一象限,如图2所示.
①四边形APBQ一定是平行四边形;
②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.

分析 (1)根据双曲线关于原点对称求出点B的坐标,结合图象得到$\frac{k}{x}$≤k′x时,x的取值范围;
(2)①根据对角线互相平分的四边形是平行四边形证明即可;
②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.

解答 解:(1)∵双曲线y=$\frac{k}{x}$关于原点对称,点A的坐标为(3,1),
∴点B的坐标为(-3,-1),
由图象可知,当-3≤x<0或x≥3时,$\frac{k}{x}$≤k′x,
故答案为:(-3,-1);-3≤x<0或x≥3;
(2)①∵双曲线y=$\frac{k}{x}$关于原点对称,
∴OA=OB,OP=OQ,
∴四边形APBQ一定是平行四边形,
故答案为:平行四边形;
②∵点A的坐标为(3,1),
∴k=3×1=3,
∴反比例函数的解析式为y=$\frac{3}{x}$,
∵点P的横坐标为1,
∴点P的纵坐标为3,
∴点P的坐标为(1,3),
由双曲线关于原点对称可知,点Q的坐标为(-1,-3),点B的坐标为(-3,-1),
如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,
则四边形CDEF是矩形,
CD=6,DE=6,DB=DP=4,CP=CA=2,
则四边形APBQ的面积=矩形CDEF的面积-△ACP的面积-△PDB的面积-△BEQ的面积-△AFQ的面积
=36-2-8-2-8
=16.

点评 本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.若(x+2012)2=987654321,则(x+2022)(x+2002)的值是(  )
A.987654321B.987654311C.987654221D.987654421

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.x5•x4-x6•x2•x.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.设一列数a1、a2、a3、…a2015、a2016中任意三个相邻数之和都是36,已知a4=2x,a5=15,a6=3+x,那么x=6,a2016=9.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.计算a2b•a的结果是(  )
A.a3bB.2a2bC.a2b2D.a2b

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么$\frac{{S}_{△AMN}}{{S}_{△ABC}}$的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{4}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,边长为1的正方形ABCD绕点A逆时针旋转30°得正方形AB′C′D′,边B′C′与CD交于点E,则四边形AB′ED的面积是(  )
A.$\frac{3}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.1805年,法军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军很难瞄准敌军,聪明的拿破仑站在南岸的点O处调整好自己的帽子,使视线恰好擦着帽舌边缘看到敌军兵营Q处,然后后退到B点,这是他的视点恰好能落在0处,于是他命令部下测量他脚站的B处与0点之间的距离,并下令按这个距离炮轰敌营,法军能命中目标吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读材料:
我们知道|x|=$\left\{\begin{array}{l}{x(x>0)}\\{0(x=0)}\\{-x(x<0)}\end{array}\right.$,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值),在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:
(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;
(2)当-1≤x<2时,原式=x+1-(x-2)=3;
(3)当x≥2时,原式=x+1+x-2=2x-1.综上所述,原式=$\left\{\begin{array}{l}{-2x+1(x<-1)}\\{3(-1≤x<2)}\\{2x-1(x≥2)}\end{array}\right.$
学以致用:
(Ⅰ)分别求出|x+3|和|x-1|的零点值;
(Ⅱ)化简代数式|x+3|+|x-1|; 
拓展应用:
(Ⅲ)求函数y=|x+3|+|x-1|(-3≤x≤3)的最大值和最小值.

查看答案和解析>>

同步练习册答案